1. Real-space renormalization group calculation for site percolation: Consider the site percolation problem on a two-dimensional triangular lattice. Divide the sites of the original lattice L into groups of three as shown below.

The three sites in a group form an elementary triangle of the original lattice L. The centres of these triangles form another triangular lattice L' whose lattice constant is $b = \sqrt{3}$ times larger than the lattice constant of L. The site percolation problem with occupation probability p on the original lattice L can be mapped to one on L' by assuming that a site in L' is occupied if a majority of the sites of the corresponding triangle (i.e. at least two of the three sites) are occupied.

(a) Calculate the occupation probability p' of a site on L' as a function of p. The function $p'(p)$ defines a renormalization group transformation R in which the length scale changes by a factor $b = \sqrt{3}$.

(b) Show that the renormalized occupation probability flows to $0(1)$ under repeated applications of R if $p < p^*(p > p^*)$. Determine the value of p^* and give a physical interpretation of this "special" value of p.

(c) Define the correlation length for $p < p^*(p > p^*)$ as the length scale at which the renormalized occupation probability is $0.01(0.99)$. Show that the correlation length defined in this way diverges as p approaches p^*. Calculate the value of the exponent ν that describes this divergence.

2. Consider the bond percolation problem on a $n \times n$ square lattice with open boundary conditions. Write a computer program to generate typical configurations of occupied bonds for different values p, the probability of a bond being occupied. Also, write a computer program to determine whether both pairs of opposite sides (top-bottom and left-right) are connected by occupied bonds in a particular configuration. Use these programs to determine the percolation probability (the probability that both pairs of opposite sides are connected) as a function of p, and plot the results for $n = 3, 4$.

1
3. Site percolation on a Bethe lattice: Consider an infinite Bethe lattice with coordination number \(z \) in which each site is occupied with probability \(p \) and vacant with probability \(1 - p \). Obtain an explicit expression for the probability that an occupied site is a member of an infinite cluster, and calculate the critical value \(p_c \) of \(p \) below which this probability is zero.

4. Consider the bond-diluted Ising ferromagnet on a square lattice. Assume that each nearest-neighbor “bond” is present with probability \(p \) and absent with probability \(1 - p \). The interaction strength of a bond that is present is \(J \). Consider a site and its four neighbors. Assume that each neighbor has a magnetization \(m \). Calculate the average (over the occupation probabilities of the four bonds that connect the central site with its nearest neighbors) value of the magnetization of the central site. Obtain a self-consistent equation for \(m \) by equating this average value with \(m \). Solve this self-consistent equation to determine the transition temperature \(T_c \) as a function of \(p \).

5. Consider a \(d \)-dimensional disordered system in which the disorder is perfectly correlated in \(d' \) dimensions \((d' < d) \). An example of such a system (with \(d = 2 \) and \(d' = 1 \)) would be a spin model on a square lattice in which the exchange interaction varies randomly in one direction and the (random) values of the exchange interaction are exactly repeated in the other direction. Derive a generalized Harris criterion for the occurrence of a continuous phase transition in such a system.