Symmetry Origin of the Dzyaloshinskii–Moriya Interaction and Magnetization Reversal in YVO3

Symmetry Origin of the Dzyaloshinskii–Moriya Interaction and Magnetization Reversal in YVO3

We have investigated magneto-structural phase transitions in polycrystalline YVO3 using high-resolution neutron powder diffraction toward understanding the phenomenon of magnetization reversal. Contrary to earlier reports, our study reveals that both C-type and G-type antiferromagnetic ordering, corresponding to G-type and C-type orbital ordered phases, respectively, occur at the same temperature (TN = 115 K) with the G-type antiferromagnetic phase growing at the expense of the C-type one on cooling. These processes cease at TS ∼ 77 K; however, a minor (∼4%) untransformed C-type phase remains unchanged down to 1.7 K. The symmetry analysis indicates different symmetry origins of the Dzyaloshinskii–Moriya interaction in each phase, which can explain the magnetization reversal observed between TN and TS