PARAM Yukti

User’s Manual
Ver. 1.0

Last updated: July 20, 2021

www.cdac.in

http://www.cdac.in/

[LC W =N W S B Ll s e =
Selcarvaial

© Copyright Notice

Copyright © 2021 Centre for Development of Advanced
Computing All Rights Reserved.

Any technical documentation that is made available by C-DAC (Centre for Development of
Advanced Computing) is the copyrighted work of C-DAC and is owned by C-DAC. This technical
documentation is being delivered to you as is, and C-DAC makes no warranty as to its accuracy or
use. Any use of the technical documentation or the information contained therein is at the risk of
the user. C-DAC reserves the right to make changes without prior notice.

No part of this publication may be copied without the express written permission of C-DAC.

® Trademarks
CDAC, CDAC logo, NSM logo are trademarks or registered trademarks.

Other brands and product names mentioned in this manual may be trademarks or registered
trademarks of their respective companies and are hereby acknowledged.

AR,

Intended Audience

This document is meant for PARAM Yukti users.

Typographic Conventions

Symbol Meaning

Bl nderlined text A hyperlink or link you can click to go to a
related section in this document or to a URL
in your web browser.

Bold The names of menus, menu items, headings,
and buttons.

Italics Variables or placeholders or special terms in
the document.

| Console commands
Console text

N\ Getting help

For technical assistance or license renewal, please send an email to yuktisupport@jncasr.ac.in .

mailto:shivaysupport@iitbhu.ac.in

s o e ki Ll s "=
SeAcarmuial

Give us your feedback

We value your feedback. Kindly send your comments on the content of this document to

yuktisupport@jncasr.ac.in . Please include the page number of the document along with your
feedback.

/A\ DISCLAIMER

The information contained in this document is subject to change without notice. C-DAC shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
performance or use of this manual.

mailto:shivaysupport@iitbhu.ac.in

[LC W =N W S B
Selcarvaial

Contents
Introduction

System Architecture and Configuration
System Hardware Specifications
Login Nodes
CPU Compute Nodes
GPU Compute Nodes
Storage
Operating System
Primary Interconnection Network
Secondary Interconnection Network
Software Stack

First Things First
Getting an Account on PARAM Yukti
First login
Forgot Password?
System Access
Remote Access
Transferring files between local machine and HPC cluster
Tools

Running Interactive Jobs

Managing Jobs through its Lifecycle
walltime
List Partition

Addressing Basic Security Concerns

More about Batch Jobs (SLURM)
Parameters used in SLURM job script
| am familiar with PBS/ TORQUE. How do | migrate to SLURM?

Preparing Your Own Executable

24
24
25

31

32
32
35

37

e s e ek Ll s e "=
Selcarvaial

Job Scheduling on PARAM Yukti 41

Scheduler 41
sinfo 41
walltime 41
Debugging Your Codes 46
Introduction 46
Basics How-Tos 46
Conclusions 65
Points to Note 65
Overall Coding Modifications Done 66
Machine Learning / Deep Learning Application Development 67
How to Install your own Software? 68
Some Important Facts 70
About File Size 70
Little-Endian and Big-Endian issues? 71
Best Practices for HPC 72
Installed Applications/Libraries 73
Standard Application Programs on PARAM Yukti 73
LAMMPS Applications 74
GROMACS APPLICATION 76

Acknowledging the National Supercomputing Mission in Publications79

Getting Help — PARAM Yukti Support 80
Steps to Create a New Ticket 80
Closing Your Account on PARAM Yukti 83

References 89

[LC W =N W S B Ll s e =

List of Figures

Figure 1 - PARAM Yukti Architecture Diagram 11
Figure 2 — Software Stack 13
Figure 3 - A snapshot of command using MobaXterm 20
Figure 4 - A snapshot of the “scp" command using Windows command prompt 20
Figure 5 - A snapshot of "scp" command using Windows PowerShell 21
Figure 6 - A snapshot of "scp" tool to transfer file to and from remote computer 22
Figure 7 — Enter Captcha/String 22
Figure 8 - Output of sinfo command 25
Figure 9 — Snapshot depicting the usage of “Job Array” 27
Figure 10 — scontrol show node displays compute node information 28
Figure 11 — scontrol show partition displays specific partition details 28
Figure 12 — scontrol show job displays specific job information 29
Figure 13 — sinfo Command 41
Figure 14 - Listing the shares of association to a cluster 44
Figure 15 — Snapshot of debugging process 49
Figure 16 — Snapshot of debugging process 50
Figure 17- Output at a debugging stage 51
Figure 18 — Snapshot of debugging process 51
Figure 19 — Output depicting “Arithmetic Exception” 52
Figure 20 — Snapshot of debugging process 52
Figure 21 — Well, we dumped core !! 52
Figure 22 - Snapshot of debugging process 53
Figure 23 — Setting Breakpoint 54
Figure 24 — single-stepping through to catch error !! 55
Figure 25 — Debugging continued 56
Figure 26 — Debugging continued 56
Figure 27 — Setting a watchpoint 57
Figure 28 — Debugging continued 58
Figure 29 — Well, Back to square one !! 59
Figure 30 — Again Dumping Core!! Things are getting interesting or frustrating or both 159
Figure 31 — Debugging continued 60
Figure 32 — Debugging continued 60
Figure 33 — Debugging continued (Will it ever end?) 61
Figure 34 — We are almost there !! 61
Figure 35 — Debugging continued 62
Figure 36 — At last a clue!!! 63
Figure 37 - Correction applied !! 64

Figure 38 — Resolved !!! 65

Figure 39 — What all we did to get things right!
Figure 40 — Snapshot of Ticketing System
Figure 41- Snapshot of Ticketing System
Figure 42 - Snapshot of Ticketing System
Figure 43 - Snapshot of Ticketing System

o, L e ek
SAcamual

Ll e ™

66
80
81
81
82

[LC W =N W S B Ll s e =
Selcarvaial

Introduction

This document is the user manual for the PARAM Yukti Supercomputing facility at
JNCASR Bangalore. It covers a wide range of topics ranging from a detailed
description of the hardware infrastructure to the information required to utilize the
supercomputer, such as information about logging on to the supercomputer,
submitting jobs, retrieving the results on to user’s Laptop/ Desktop, etc. In short, the
manual describes all that one needs to know to effectively utilize PARAM Yukti.

The supercomputer PARAM Yukti is based on the heterogeneous and hybrid
configuration of Intel Xeon Cascade lake processors and NVIDIA Tesla V100. The
system was designed and implemented by the HPC Technologies team, Centre for
Development of Advanced Computing (C-DAC).

It consists of 2 Master nodes, 4 Login nodes, 4 Service nodes and 156
(CPU+GPU) compute nodes with a total peak computing capacity of 838
(CPU+GPU) TFLOPS performance.

[LC W =N W S B Ll s e =
Selcarvaial

System Architecture
and Configuration

System Hardware Specifications

PARAM Yukti system is based on processor Intel Xeon Platinum 8268 and Intel
Xeon Gold 6248 and with a total peak performance of 838 TFLOPS. The cluster
consists of compute nodes connected with BullSequana XH2000 HDR 100
Infiniband interconnect network. The system uses the Lustre parallel file system.

e Total number of nodes: 166 (10 + 156)
o Master nodes: 2

Login nodes: 4

Service nodes: 4

CPU only nodes: 75

GPU ready nodes: 32

GPU nodes: 10

High Memory nodes:39

O O O O O O

Login Nodes

Login nodes are typically used for administrative tasks such as editing, writing
scripts, transferring files, managing your jobs etc. You will always get connected to
one ofthe login nodes. From the login nodes, you can connect to a compute node
and execute an interactive job or submit the batch jobs through the batch system
(SLURM) to run your jobs on compute nodes. For ALL users PARAM Yukti login
nodes are the entry points and hence are shared. By default, there will be a limit on
the CPU time that can be used on a login node by a user and there is a limit/user on
the memory as well. If any of these are exceeded, the job will get terminated.

Login Nodes: 4

2* Intel Xeon G-6248 Total Cores = 160 cores
Cores =40, 2.5 GHz

Memory= 384 GB Total Memory = 1536 GB
HDD =1 TBx8

CPU Compute Nodes

[LC W =N W S B Ll s e =
Selcarvaial

CPU nodes are indeed the workhorses of PARAM Yukti. All the CPU-intensive
activities are carried on these nodes. Users can access these nodes from the login
node to run interactive or batch jobs. Some of the nodes have higher memory, which
can be exploited by users in an aforementioned way.

CPU only Compute Nodes:
75
2* Intel Xeon Platinum 8268 Total Cores = 3600 cores
Cores =48, 2.9 GHz
Memory= 192 GB, DDR4 2933 MHz Total Memory=14400 GB
SSD =480 GB (local scratch) per

node
GPU ready Compute
Nodes: 32
2* Intel Xeon Platinum 8268 Total Cores = 1536 cores

Cores =48, 2.9 GHz
Memory= 192 GB, DDR4 2933 MHz Total Memory=6144 GB

SSD =480 GB (local scratch) per node

GPU Compute Nodes

GPU compute nodes are the nodes that have CPU cores along with accelerators
cards. For some applications, GPUs get markedly high performance. For exploiting
these, one has to make use of special libraries which map computations on the
Graphical Processing Units (Typically one has to make use of CUDA or OpenCL).

GPU Compute Nodes:
10
2* Intel Xeon G-6248 Total Cores = 400 cores
Cores =40, 2.5 GHz

Memory= 192 GB, DDR4 2933 MHz Total Memory= 1920 GB

SSD =480 GB per node
2*nVidia V100 per node

GPU Cores per node= 2*5120=
10240
GPU Memory = 16 GB HBM2 per nVidia V100

CPU only Compute Nodes with High
memory : 39
2* Intel Xeon Platinum 8268
Cores =48, 2.9 GHz Total Cores = 1872 cores

Memory= 768 GB, DDR4 2933 MHz Total Memory=29952 GB

e =, e wikck Ll s "=
Bl camnnnal

SSD =480 GB per node

Storage

e Based on Lustre parallel file system
e The total usable capacity of 1200 TB Primary storage
e Throughput 25GB/s

Operating System
e The operating system on PARAM Yukti is Linux — CentOS 7.6

PARAM Yukti Architecture Diagram

S

:\w

Service/Management Nodes (3 nos.)

Firewall Secondary

Communication

—
——— — T
—
IPMI
Login Nodes
(44 T
[s Master Nodes (2 nos.)
T ’ "
—-—y o B
10 G (2 nos.) = ol
Compute . e it
Nodes _ _ == I
fesi -
< Sy |

Storage

L2 - Infiniband HDR)
P St
200 Gbps (3 nos.) rimary Storage

P =
GPU A b | F

Exr=sa RaseEn AxEaaA
Compute : et
Nodes & S -
(10 nos.) S [ro——— —
[O BESEE ——

L1 - Infiniband HDR

)
o e | 200Ghps (Epos)) Archival Storage
Compute S e)
Nodes :] *
with High : ’ - : —=
memory PN — e 2
(39 nos)) s S ———
) e]

#————4 Secondary (1G)
+—s 106
s |PMI
#———+ |Infiniband

Figure 1 - PARAM Yukti Architecture Diagram

Network infrastructure

Robust network infrastructure is essential to implement the basic functionalities of
a cluster. These functionalities are:

a) Management functionalities i.e. to monitor, troubleshoot, start, stop
various components of the cluster, etc. (Network/ portion of Network which

implements this functionality is referred to as Marl?gement:iabric)rc-x

b) Ensuring fast read/ write access to the storage (Network/ portion of
Network which implements this functionality is referred to as storage

fabric).

c) Ensuring fast I/0O operations like connecting to other clusters,
connecting the cluster to various users on the campus LAN, etc.
(Network/ portion of Network which implements this functionality is
referred to as 1/0 Fabric).

d) Ensuring High-Bandwidth, Low-latency communication amongst
processors for achieving high-scalability (Network/ portion of Network
which implements this functionality is referred to as Message Passing
Fabric)

Technically, ALL the aforementioned functionalities can be implemented in a single

network. From the perspectives of requirements, optimal performance, and economic
suitability, the aforementioned functionalities are implemented using two different
networks based on different technologies, as mentioned next:

Primary Interconnection Network

Computing nodes of PARAM Yukti are interconnected by a high-bandwidth,
low-latency interconnect network.

InfiniBand: HDR 100 Gbps

InfiniBand is a high-performance communication architecture owned by Mellanox.
This communication architecture offers low communication latency, low power
consumption, and high throughput. All CPU nodes are connected via the
InfiniBand interconnect network.

Secondary Interconnection Network

Gigabit Ethernet: 1 Gbps

Gigabit Ethernet is the interconnection network that is most commonly available.
For Gigabit Ethernet, no additional modules or libraries are required. The Open
MPI, MPICH implementations will work over Gigabit Ethernet.

Software Stack

A software stack is an aggregation of software components that work in tandem to
accomplish a given task. The task can be, to facilitate a user to execute his job/s or
to facilitate a system administrator to manage a system efficiently. In effect, the

software will have all the necessary components to accomplish a given task. There

may be multiple components of different flavors to accomplmgivemsub-taskahe
user/ administrator may mix and match these components depending on his choice.
Typically, a user would be interested in preparing his executable, executing the same
with his data sets, and visualize the output generated by him. For accomplishing the

same, the user would need to compile his codes, link the codes with communication

libraries, Math Libraries, Numerical algorithm libraries, prepare the executables, run
the same with desired data sets, monitor the progress of his jobs, gathering the
results, and visualizing the output.

Typically, a system administrator would be interested in ensuring that all the
resources are optimally utilized. For accomplishing this, he may need some
installation tools, tools for checking the health of all the components, good
schedulers, tools to facilitate allocation of resources to users, and monitor the usage
of the resources.

The software stack provided with this system has a gamut of software components
that meets all the requirements of a user and that of a system administrator. The
components of the software stack are depicted in figure 2.

Amongst these, C-CHAKSHU and CHReME have been recently developed and
deployed by CDAC. We solicit your feedback on these tools at
uktisupport@jncasr.ac.in

C-C HAKSHU: This is a multi-cluster management tool that facilitates the
administrator to efficiently operate the HPC facility. It also enables the user to
monitor system metrics relating to CPU, Storage, Interconnects, File system and
Application specific utilization from a single dashboard. For more information,
please follow the link._http://paramyukti.jncasr.ac.in:4200

CHReME: This is a web-based resource management portal with an intuitive GUI
that facilitates managing, monitoring, and tracking HPC workloads. It provides a
customizable and user-friendly workflow interface to HPC users for state-based
pre-processing, execution, and post-processing of applications. For more details,

please follow the link. http://paramyukti.jncasr.ac.in:8097/CHReME

HPC
Programming
Tools

Middleware
Applications
and

Management

Operating
Systems

mailto:yuktisupport@jncasr.ac.in

Figure 2 — Software Stack P RLAR Wkt —

Functional Areas

Base OS

Architecture

Provisioning
Cluster
Manager

Monitoring Tools

Resource Manager

I/O Services
High Speed Interconnects

Compiler Families

MPI Families

Components

CentOS 7.6
X86 64

xCAT 2.14.6
Openhpc (ohpc-xCAT 1.3.8)

C-CHAKSHU, Nagios, Ganglia, XDMoD

Slurm

Lustre Client
Mellanox InfiniBand

GNU (gcc, g++, gfortran)
Intel Compiler (icc, ifort, icpc)

MVAPICH, OpenMPI, MPICH

Free Hand

Free Hand

e S P etk Ll e =
Bl camnnnal

First Things First

Getting an Account on PARAM Yukti

To begin with, you need to get an account on PARAM Yukti. This is a very easy
process. Please follow the steps given below:

a) Download the ‘User Account Creation Form’ by following

b)

the link_https://paramyukti.jncasr.ac.in/ucform

Fill in the relevant details.

c) Get the signatures of your Head of the Department and the ‘Approving
Authority’.

d)

e)

Note:

For JNCASR users will have the approving authority from JNCASR
Bangalore. They can submit it to the PARAM Yukti system Administrator* or
email a scanned copy to._yuktisupport@jncasr.ac.in

For Users who are not from JNCASR, Bangalore will have to email the
scanned copy to yuktisupport@jncasr.ac.in, HoD HPC-Tech CDAC will be
the approving authority for them.

You will receive an Email in your official Email ID intimating the creation of
your account along with a temporary password set by the system to your
account. You will also get a copy of this document by Email.

Log into PARAM Yukti and you will be prompted to change the password.
When once you change the temporary password provide by the system to
your own password, you are ready to use PARAM Yukti!!

Info: *

Param Yukti, Jawaharlal Nehru Centre For Advanced Scientific Research
(JNCASR) Rachenahalli Lake Rd, Jakkur, Bengaluru, Karnataka 560064
Email: vuktisupportic incasr.ac.in

First login

Whenever the newly created user on PARAM Yukti tries to login with the User Id and
password (temporary, system-generated) provided over the Email through PARAM
Yukti support, he/she will next be prompted to create a “new password” of their
choice which will change the temporary, system-generated password. This will
enable you to keep your account secure. It is recommended that you have a strong

https://paramyukti.jncasr.ac.in/ucform
mailto:yuktisupport@jncasr.ac.in
mailto:yuktisupport@jncasr.ac.in

= A e whakin PR]
LR T TTET

password that contains the

[LC W =N W S B Ll s e =
Selcarvaial

combination of alphabets (lower case / upper case), numbers, and a few special
characters that you can easily remember.

Given next is a screenshot that describes the scenario for “the first login”
Observe the picture below and answer the question listed afterwards:
PSR LY N N L R
ERe [k T ME TR [T &[4 3
Nl Wk o % wwle %G Smoh %A

Type the string above: KkdTYbnM
FPassword :

You are reguired to change your password ilmmediately (password aged)
password expired 18078 days ago
Maw password:

Your password will be valid for 90 days. On the expiry of 90 days period, you will
be prompted to change your password, on attempting to log in. You are required to
provide a new password.

Forgot Password?

There is nothing to panic!! Please raise a ticket regarding this issue and the system
administrators will resolve your problem. Please refer to the section “Getting Help —
PARAM Yukti Support, described elsewhere in this manual. Follow the GUI-based,
user-friendly ticketing system. Please follow the steps given below:

1. Open the PARAM Yukti support site i.e the ticketing tool by following
the link_https://paramyukti.jncasr.ac.in/support

Login with your registered email id, Complete name, Contact number.
There you can raise a ticket to get the password reset.

The system admin person will revert with an email for verification.

AR

Once acknowledged, the password is reset for the user and an email is sent
back for intimating the same.

6. Then the user can login with the temporary password and can set a new
password of his/her choice.

System Access

Accessing the cluster

The cluster can be accessed through 4 general login nodes, which allows users to login.

* You may access the login node through ssh.

https://paramyukti.jncasr.ac.in/support

[LC W =N W S B Ll s e =
Selcarvaial

= The login node is the primary gateway to the rest of the cluster, which has a
job scheduler (called Slurm). You may submit jobs to the queue and they
will run when the required resources are available.

= Please do not run programs directly on the login node. Login node is used to
submit jobs, transfer data, and compile source code. (If your compilation
takes more than a few minutes, you should submit the compilation job into the
queue to be run on the cluster.)

= By default, two directories are available (i.e. /home and /scratch). These
directories are available on login node as well as the other nodes on the
cluster. /scratch is for temporary data storage, generally used to store data
required for running jobs.

Remote Access

Using SSH in Windows

To access PARAM Yukti you need to “ssh” the login server. PUTTY is the most
popular open-source “ssh” client application for Windows, you can download it from
(http://www.putty.org/). Once installed, find the PuTTY application shortcut in your
Start Menu, desktop. On clicking the PuTTY icon The PuTTY Configuration dialog
should appear. Locate the “Host Name” input Field in the PUuTTY Configuration
screen. Enter the user name along with the IP address or Hostname with which you
wish to connect.

(e.g. [username]@[Host Name] —p [port number]) for outside
access (e.g. [username]@)[Host Name] for local access

Enter your password when prompted, and press Enter.

Using SSH in Mac or Linux

Both Mac and Linux systems provide a built-in SSH client, so there is no need to
install any additional package. Open the terminal, connect to an SSH server by
typing the following command:

You will be prompted for a password, and then will be connected to the server.

http://www.putty.org/)
http://www.putty.org/)
Free Hand

Free Hand

[LC W =N W S B Ll s e =
Selcarvaial

Password

How to change the user password?

Use the passwd command to change the password for the user from login node.

W@loginl ~15 passwd
Chnanging password for user
({current) LDAP Password:
New password:
Retype new password:

Transferring files between local machine and HPC cluster

Users need to have the data and application related to their project/research work
on PARAM Yukti.

To store the data special directories have been made available to the users with the name
“home” the path to this directory is “/home”. Whereas these directories are common

to all the users, a user will get his own directory with their username in /home/
directories where they can store their data.

thame{{username}f: ! This directeory is generally used by the user
(to install applications,

However, there is a limit to the storage provided to the users, the limits have been
defined according to quota over these directories, all users will be allotted the same
quota by default. When a user wishes to transfer data from their local system
(laptop/desktop) to the HPC system, they can use various methods and tools.

A user using ‘Windows’ operating system will get methods and tools that are native
to Microsoft windows and tools that could be installed on your Microsoft Windows
machine. Linux operating system users do not require any tool. They can just use
the “scp” command on their terminal, as mentioned below.

Users are advised to keep a copy of their data with themselves, once the
project/research work is completed by transferring the data in from PARAM Yukti to
their local system (laptop/desktop). The command shown below can be used for
effecting file transfers (In all the tools):

! scp —-r <path to the local data directory> <your username>@<IP of
 paramyukti/Host Name>:<path to directory on HPC where to save
i the datax

Free Hand

Free Hand

s o e ki Ll s "=
SeAcarmuial

Example:

The same command could be used to transfer data from the HPC system to your
local system (laptop/desktop).

fscp -r /dir/dir/file testuser@<cluster IP/Name>:/home/testuser !

Example:

Escp —r <path to directory on HPC» <your username>@<IP of
i local system>:<path to the local data directory>

Escp o /home/testuser testuserf@<local
. system IP/Name>:/dir/dir/file

Note: The Local system (laptop/desktop) should be connected to the network with which it
can access the HPC system.

To reiterate,
Copying Directory/File from local machine to PARAM Yukti:

To copy a local directory from your Linux system (say Wrf-2.0) to your home
directory in your PARAM Yukti HPC account, the procedure is:

1. From the terminal go to the parent directory using cd
command. user1@mylaptop:~$cd ~/MyData/

2. Under parent directory type Is <& press Enter key>, & notice Wrf-2.0 is
there. user1@mylaptop: ~$Is Files TempFiles-0.5 Wrf-2.0

3. Begin copy by typing:
user1@mylaptop:~$ scp -r Wrf-2.0 (username)@paramyukti.jncasr.ac.in

< you will be prompted for password ; enter your password >

4. Now login to your account as: user1@mylaptop:~$ ssh (your
username)@ paramyukti.jncasr.ac.in < you will be prompted for
password ; enter password > [user1@Ilogin ~]$

Is command, you should see Wrf-2.0 directory.

6. While copying from PARAM Yukti to your local machine, follow the same steps

[LC W =N W S B e =

By interchanging source and destination in the scp command. Refer to the generic
copying described earlier.

Tools

MobaXterm (Windows installable application):

It is a third-party freely available tool that can be used to access the HPC
system and transfer files to the PARAM Yukti system through your local
systems (laptop/desktop).

Link to download this tool: https://mobaxterm.mobatek.net/download-home-edition.html

B /home/mobaxter! - 7
R R i
f #
Welcome To JNCASR Cluster #

ype the string above: shTABdFZ
Passyord:
script2.sh 108% @ 0.0KB/s 080:08

Figure 3 - A snapshot of command using MobaXterm

Command Prompt (Windows native application):

This is a native tool for Windows machines that can be used to transfer data
from the PARAM Yukti system through your local systems (laptop/desktop).

@ Command Prompt - O X

Figure 4 - A snapshot of "scp" command using Windows command prompt.

https://mobaxterm.mobatek.net/download-home-edition.html
Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

[LC W =N W S B Ll s e =

Bl

PowerShell (Windows native application)

This is a native tool for Windows machines that could be used to transfer data
from the PARAM Yukti system through your local systems (laptop/desktop).

EN Windows PowerShell — O >

PS C:\Usersg Desktop> scp
FH RS R R R R R R R R N R R R R R R R R R AR T R R T e

Welcome To JINCASR Cluster

e T e e
If you truly desire access to this host, then you must indulge me in a simple challenge.

Figure 5 - A snapshot of "scp" command using Windows PowerShell.

WinSCP (Windows installable application)

This popular tool is freely available and is used very often to transfer data from
Windows machines to Linux machines. This tool is GUI-based which makes it very
user-friendly.

The link for this tool is: https://winscp.net/ena/download.php

https://winscp.net/eng/download.php
Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

s o e ki Ll s "=

Bl camnnnal

By Login — x
G New Site Session
File protocol:
SFTP =
Host name: Port number:
| . -
{ : | :
User name: Password:
" I
- I |
Save Iv Advanced... Iv
Tools - Manage - Close Help

Show Login dialog on startup and when the last session is dosed

Figure 6 - A snapshot of "scp" tool to transfer files to and from a remote

computers.

Server prompt - S >

Authenticating...
ﬁ Using username " 1
W
If you truly desire access to this host, then you must indulge me in a simple
challenge.

Ohserve the picture below and answer the gquestion listed afterwards:

ATAYAYATAYATAYA'
(ilulolalblw]yIMm)
(WAWAWAWAWAWAWAY)

Type the string above:

y
Figure 7 — Enter Captcha/String

Note: Port Used for SFTP connection is . and not 22, Please change it to

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

[LC W =N W S B Ll s e =
Selcarvaial

Running Interactive Jobs

In general, the jobs can be run in an interactive manner or in batch mode. You
can run an interactive job as follows:

The following command asks for a single core on one hour with the default amount of
memory.

ES srun --nedes=1 --ntasks-per-node=1 --time=01:00:00 --pty bash -1
The command prompt will appear as soon as the job starts. This is how it looks
once the interactive job starts:

?srun: Jjob xxxxx gqueued and waiting for resources srun: job XEXXEX
: has been allcocated resources

Where xxxxx is the job id.

Exit the bash shell to end the job. If you exceed the time or memory limits the job
will also abort.

Please note that PARAM Yukti is NOT meant for executing interactive jobs.
However, for the purpose of quickly ascertaining the successful run of a job before
submitting a large job in batch (with large iteration counts), this can be used. This
can even be used for running small jobs. The point to be kept in mind is that, since
others too would be using this node, it is prudent not to inconvenience them by
running large jobs.

It is a good idea to specify the CPU account name as well (if you face any problems)

ES srun --account=<NAME OF MY ACCOUNT> --nodes=1 ——ntasks—per—node=l§
==time=01:00:00 -- pty bash -1]

e S P etk Ll e =
Bl camnnnal

Managing Jobs through its
Lifecycle

PARAM Yukti extensively uses modules. The purpose of the module is to provide the
production environment for a given application, outside of the application itself. This
also specifies which version of the application is available for a given session. All
applications and libraries are made available through module files. A user has to
load the appropriate module from the available modules. Users can add a particular
module in their ~/.bashrc also if they don’t want to load a particular module file for
each time after they login.

module # This command lists all the available
N odul o , , ,
module load # This will load the intel compilers into

compiler/intel/2018.2.199 your

module unloadcompiler/intel/2018.2.199 # This will remove all environment setting

_related 1o, intel-2018 compiler Joaded previously o

A simple Slurm job script

#!/binf=sh
ACRATTH =W i esnacrifias nmmher of

#SBATCH —-ntasks-per-node=48 Ff specifies cores per node

#SBATCH —-time=06:50:20 /) specifies maximum duration of run

#5BATCH --job-—name=lammps /f specifies job name

#SBATCH --error=job.%J.err node 48 /f specifies error file

name #SBATCH --cutput=job.%J.cut node 48 //specifies output

file name #SBATCH --partition=standard ff specifies

cd ff To run jeb in the directory from where it
SETIRM SIRMTT NTR i

export T_?«1PT_FF.F.RT[_‘..’:',=5':'1|'|:-:_i'e._::' S /Foar Intel MPI wversions 2019 anwards

this walue must be shm:ofl
mpiexec.hydra —n S5LUEM NTASES lammps.exe

walltime

Walltime parameter defines how long your job will run. The maximum runtime of a
job is allowed as per QoS policy. If more than 3 days are required, a special request
needs to be sent to the HPC coordinator and it will be dealt with on a case-to-case
basis. The command line to specify walltime is given below.

[LC W =N W S B Ll s e =

Bl

srun -t walltime <days-hours:mins:seconds>

¥

and also as part of the submit scripts described in the manual. If a job does not get
completed within the walltime specified in the script, it will get terminated.

The biggest advantage of specifying appropriate walltime is that the efficiency of
scheduling improves resulting in improved throughput in all jobs including yours.
You are encouraged to arrive at the appropriate walltime for your job by executing
your jobs few times.

NOTE: You are requested to explicitly specify the walltime in yvour command lines and scripts.

List Partition

sinfo displays information about nodes and partitions(queues).

$ sinfo

IIT NODES

)-161,103-1087],hm[ee1-

Figure 8 - Output of sinfo command

Submit the job

We can consider three cases of submitting a job

1. Submitting a simple standalone job

This is a simple submit script which is to be submitted

1 § sbatch slurm-job.sh
! Submitted batch job 106

2. Submit a job that's dependent on a prerequisite job being completed

Consider a requirement of pre-processing a job before proceeding to actual
processing. Pre-processing is generally done on a single core. In this scenario,
the actual processing script is dependent on the outcome of pre-processing
script.

here’s a simple job script. Note that the Slurm -J option is used to give the job a name.

E#!5u5rfbinf3ﬁv bash
#5BATCH -p standard
{ #5BATCH -J simple

i sleep &0

https://www.brightcomputing.com/Blog/bid/172545/How-to-Submit-a-Simple-Slurm-GPU-job-to-your-Linux-cluster

s o e ki Ll s "=
SeAcarmuial

Submit the job: % sbatch simple.sh
Submitted batch job 149

Now we'll submit another job that's dependent on the previous job. There are
many ways to specify the dependency conditions, but the "singleton" method is
the simplest. The Slurm -d singleton argument tells Slurm not to dispatch this
job until all previous jobs with the same name have completed.

i § sbatch -d singleton simple.sh //may be used for first

| pre-processzing on a core and then submitting

i Submitted batch job 150

© 5 sgueue

i JOBID BARTITION NWAME USER ST TIME NODES NODELIST (REASCHN)
150 standard simpleuserl PD 0:00 1 (Dependency)
149 standard simpleuserl R 0:17 1 atom0l

Once the prerequisite job finishes the dependent job is dispatched.

;3 sgueue
JOBID PARTITION MAME USER 5T TIME NODES NODELIST (REASOH)
150 standard simpleuserl R 0:31 1 atom0l

Submit a job with a reservation allocated

Slurm has the ability to reserve resources for jobs being executed by select
users and/or select bank accounts. A resource reservation identifies the
resources in that reservation and a time period during which the reservation is
available. The resources which can be reserved include cores, nodes.

Use the command given below to check the reservation name allocated to your
user account

If your ‘user account’ is associated with any reservation the above command
will show you the same. For eg. The reservation name given is user_11. Use
the command given below to make use of this reservation

[LC W =N W S B Ll s e =
Bl

4. Submitting multiple jobs with minor or no changes (array jobs)

A SLURM job array is a collection of jobs that differs from each other by only a
single index parameter. Job arrays can be used to submit and manage a large
number of jobs with similar settings.

Submit a job array with index values between 0 and 31
sbatch ——array=0-31 -N1 tmp

Submit a job array with index values of 1, 3, 5 and 7

sbatch ——-array=1,3,5,7 —N1 tmp

Submit a job array with index values between 1 and 7
with a step size of 2 (i.e. 1, 3, 5 and 7)
sbatch --array=1-7:2 -N1 tmp

Figure 9 — Snapshot depicting the usage of “Job Array”

N1 is specifying the number of nodes you want to use for your job. example: N1
-one node, N4 - four nodes. Instead of tmp here you can use the below example
script.

#!/bin/bash

#SBATCH -N 1

#SBATCH --ntasks-per-node=48
#SBATCH --error=job.%A %a.err
#SBATCH --output=job.%A %a.out
#SBATCH --time=01:00:00
#SBATCH --partition=standard

module load compiler/intel/2018.2.199
cd /home/guest/
export OMP_NUM_THREADS=${SLURM_ARRAY_TASK_ID}

/home/guest/ /md_omp

List jobs

Monitoring jobs on SLURM can be done using the command squeue. squeue is
used to view job and job step information for jobs managed by SLURM.

i sgueus
JOBID PARTITION HAME USER ST TIME NODES NODELIST (REASON)
106 =tandard slurm-Jjo userl R 0:04 1 atem0l

Free Hand

Free Hand

o = P "mlc b L= =

Get job details

scontrol can be used to report more detailed information about nodes, partitions,
jobs, job steps, and configuration.

scontrol show node - shows detailed information about compute nodes.

[root@master ~]# scontrol show node cnBgl
NodeName=cnB01 Arch=x86_64 CoresPerSocket=24
CPUALLloc=0 CPUTot=48 CPULoad=0.81
AvailableFeatures=cpu,centos?y
ActiveFeaturEE:cpu,centai?
Gres={(null)
NodeAddr=cn881 NodeHostName=cn881 Version=19.85.5
0S=Linux 3.10.0-1862.9.1.e17.x86 64 #1 SMP Fri Dec 6 15:49:49 UTC 2819
RealMemory=1 AllocMem=0 FreeMem=187048 Sockets=2 Boards=1
State=IDLE ThreadsPerCore=1 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/A
Partitions=standard, debug
BootTime=2020-03-30T19:19:53 SlurmdStartTime=2020-03-30T19:20:32
CfgTRES=cpu=48 ,mem=1M,b1111ng=48
A1l 1locTRES=
CapWatts=n/a
CurrentWatts=0 AveWatts=0
ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

Figure 10 — scontrol show node displays compute node information

scontrol show partition - shows detailed information about a specific partition

[root@master ~]# scontrol show partition hm
PartitionName=hm
AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL
AllocNodes=ALL Default=NO QoS=N/A
Defaul tTime=NONE DisableRootJobs=N0O ExclusivelUser=N0 GraceTime=8 Hidden=HNC
MaxMNodes=UNLIMITED MaxTime=3-88:080:00 MinNodes=8 LLN=NO MaxCPUsPerNode=UNLIMITED

Nodes=hm[862-039]

PriorityJobFactor=58 PriorityTier=58 RootOnly=NO RegResw=N0 OverSubscribe=NC
OverTimeLimit=NONE PreemptMode=0FF

State=UP TotalCPUs=1824 TotalNodes=38 SelectTypeParameters=NONE
JobDefaults={null)

DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED

Figure 11 — scontrol show partition displays specific partition details

scontrol show job - shows detailed information about a specific job or all jobs if no
job id is given.

root@mas -]# scontrol show job 6783
JobId=6783 JobMame=lammps

UserId ') " GroupId= ’) mMcs_label=nN/A
Priority=s149s wilce=v Account=nsmapp QuS=normal
JobState=RUNNING Reason=None Dependency=(null)
Regueue=1 Rest:) BatchF1 g=1 Reboot=06 ExitCode=0:0
RunTime=084 31:00 TimeMin=N/A
SubmitTime=28 eF 7 EligibleTime=2020-84-14T17:20:47
AccrueTime 20:47
StartTime=2 : 2 8 1 2082 2:11 48 Dead1ine=NﬁA
SuspendTime=None Secs Prebuupend:@ La:tSchedEv :
Partition=standard AllocNode:Sid=login@1:96927
RegNodeList=(null) ExcModeList={(null)
NodeList= cn[E'C 8691 ,hm[B19-629]

2 NumCPU
280, nod
ksPerN:B:S: 1@:%:% CoreSpec=*

MinCPUsNode=48 MinMemoryNode ' 11skNode
Features=(null) DelayBoot=00:00:00
OverSubscribe=0K Contiquous Licenses= (null) Network={null)
Command=/home;/” 'NEW_LAMMPS/lammps - 7Augl9/bench/lammps cpu mpi 32 node.s
WorkDir=/home 1/NEW_LAMMPS /lammps - 7Augl9/bench
StdErr=/home; /NEW _LAMMPS/Lammps - 7Augl9/bench/job.%J.err_32 node_40

/NEW_LAMMPS /lammps - 7Augl9/bench/job.%J.out_32 node 40

Power=

Figure 12 — scontrol show job displays specific job information

scontrol update job - change attributes of the submitted job. like time limit, priority (root
only)

i 5 scontrol show job 106

{ JobId=106 Name=slurm-job.

p Userld=userl (1001} arjﬂpld userl (LO0O1)
Priority=42%4901717 Account=(null) QO0S=normal
JobState=RUNNING Heasur=ﬂun= Dependen r»—rnu 1)
Requeus=1 Restarts=0 BatchFlag=] Exil ade=0:10
FunTime=00:00:07 '1"_:nc.-':_:|u.l =14-00:00:0 TimeMin=HN/A
SubmitTime=2013-01-26T12:55:02 El |q|h1u ime=2013-01-26T12:55:02
StartTime=2013=-01-26T12:55:02 EndTime=Unknown
PreemptTime=None SuspendTime=HNone SecsPreSuspend=0
Partition=standard AlloecNode:Sid=ataom-headl:3526&
RegiodeList=({null) ExcModelList=(null)
NodeList=atomll
BatehHost=atem(l
NumNodes=1 MNumCPUs=Z CPUs/Task=]1 BegqS:C:T=%¥:¥:%®
MinCPUsHode=1 MinMemoryNode=0 MinTmpDiskNode=0
Features={null) Gres=(null) Reservation=(null}

Shared=0 Contigucus=0 Licenses=(null) Netwark=(null)
: Command=/home/userl/slurm/local fslurm-job. sh :
R HorkBir=/home ueer s L iEmd Lo a ot :

scontrol update job= 106 TimeLimit=15-00:00:0

Suspend a job (root only):

i # scontrol suspend 135
i # sgueue
JOBID PARTITION WAME USER ST TIME NODES NODELIST (REASCH)

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

e S P etk Ll e =
Bl camnnnal

135 standard simple.s userl 5 0:10 1 atomdl

Resume a job (root only):

;# scontrol resume 135

i # sgqueue
JOBID PARTITION MAME USER ST TIME NCDES NODELIST (REASCHN)

135 standard simple.s userl R 0:13 1 atomil

Kill a job. Users can kill their own jobs, root can kill any job.

53 scancel 135
15 sgueue
JCOBID BPARTITION WAME USER ST TIME MODES NODELIST (REASCH)

Hold a job:

5 =gueus
TR Th L [s =] TTHME L) ik
139 standard simple userl PD 0:00 1 (Dependency)
138 standard simple userl R 0:16 1 atom0O1
$ scontrol hold 139
S squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
139 standard simple wuserl PD 0:00 1 (JobHeldUser)
138 standard simple wuserl R 0:32 1 atom01
Release a
job:
% scontrol release 135
5 sgueus
JORTT BARTTTTON NAME Mang TIME HNODES
1342 standard simpleuserl FPD NODELIST (REASON)

128 standard simpleuser] R 0:001 (Dependency) :
e e e e e e e e aaaaaas B IO =y B 1 1

[LC W =N W S B Ll s e =
Selcarvaial

Addressing Basic Security
Concerns

Your account on PARAM Yukti is ‘private to you'. You are responsible for any actions
emanating from your account. It is suggested that you should never share the
password with anyone including your friends and system administrators!!

Please note that, by default, a new account created on PARAM Yukti is readable
by everyone on the system. The following simple commands will make your
account adequately safe.

chmod 700 /home/$user !' will ensure that only yourself can read, write and

I execute files in your home directory

chmod 750 /home/$user I will enable yourself and the members of your
I group to read and execute files in your home

! directory

chmod 755 /home/$user | ! will enable yourself, your group members and
I everyone else to read and execute files in your
! directory

chmod 777 /home/$user | ! will enable everyone on the system to read,
I write and execute files in your home directory.
I This is a sort of ‘free for all’ situation. This

I should be used very judiciously

[LC W =N W S B Ll s e =
Selcarvaial

More about Batch Jobs (SLURM)

SLURM (Simple Linux Utility for Resource Management) is a workload manager that
provides a framework for job queues, allocation of compute nodes, and the start and
execution of jobs.

It is important to note:

» Compilations are done on the login node. Only the execution is scheduled via
SLURM on the compute nodes

« Upon Submission of a Job script, each job gets a unique Job Id. This can be
obtained from the ‘squeue’ command.

 The Job Id is also appended to the output and error filenames.

Parameters used in the SLURM job script

The job flags are used with SBATCH command. The syntax for the SLURM
directive in a script is "#SBATCH <flag>". Some of the flags are used with the srun
and salloc commands.

Resource Flag Syntax Description
partition --partition=partition name Partition is a queue for jobs.
time --time=01:00:00 Time limit for the job.
nodes --nodes=2 Number of compute nodes for
the job.
cpus/core --ntasks-per-node=8 Corresponds to number of
s cores
on the compute node.
resource --gres=gpu:2 Request use of GPUs on
feature compute nodes
account --account=group-slurm- Users may belong to groups or
account accounts.
job name --job-name="lammps" Name of job.
output file --output=lammps.out Name of file for stdout.

-w, --nodelist Request a specific list of hosts.

e =, e wikck Ll s "=
Bl camnnnal

--mail-type= Notify user by email when
certain event types occur. Valid
type values are NONE, BEGIN,
END, FAIL, REQUEUE, ALL
TIME_LIMIT, TIME_LIMIT_90
(reached 90 percent of time
limit), TIME_LIMIT_80
(reached 80 percent of time
limit), and

___TIME_LIMIT_50 (reached 50

Resource Flag Syntax Description
percent of time limit). Multiple
type values may be specified
in a comma separated list
email --mail-user User's email address
address username@jncasr.ac.in
User to receive email
notification of state
changes as defined by

--mail-type
access --exclusive Exclusive access to compute
nodes.
The job allocation cannot
share

nodes with other running jobs

Script for a Sequential Job

" #!/bin/bash

D 4SBATCH -N 1 // number of nodes

| #SBATCH --ntasks-per-node=1 // number of cores per node

! #2BATCH --error=job.%J.err // name of output file

! #3BATCH --output=job.%J.out // name of error file

! #SBATCH —-—time=01:00:00 // time required to execute the program #SBATCH

| ——partition=standard // specifies gqueue name (standard iz the default
ipartition if wou does not specify any partiticn job will be

! submitted using default partition). For other partitions you can specify hm
Par gpu

i // To load the module //

Emadulc load compiler/intel/2018.2.19%

i ed <Path of the executable>

5--.r’-l'1ﬂ1'|1ﬂ=.-f1:dac:-‘a-.-out---{-----------h’-m--l:rf--thﬂ--executahl-e--EI-:--:

Script for a Parallel OpenMP Job

i #1/bin/bash

{ §SBATCH -N 1 // Number of nodes

E#SBETCH --ntasks-per-node=48 // Number of core per node

! #$5BATCH ——error=job.%J.err /7 Name of output file

| $5BATCH —-output=job.%J.cut // Name of error file

E#SBETCH ——time=01:00:00 7/ Time take to execute the program #SBATCH —-

S T T L B T, SR S T S R T ST S

mailto:username@jncasr.ac.in

[LC W =N W S B Ll s e =
Selcarvaial

o= <path of the

exacutabhle> or

od S$5LURM SUBMIT DIE //Te run job in the directery from where it
is submitted

export OMP_NUM THREADS=4% (Depending upon your regquirement you can
change number of threads. If total number of threads per node is more
than 48, multiple threads will share core(s) and performance may
degrada)

e
Script for Parallel Job — MPI (Message Passing Interface)
#1/bin/sh

#SBATCH -N 16 // Number of nodes

#SBATCH --ntasks-per-node=48 // Number of cores per node #SBATCH
+-time=06:50:20 // Time required to execute the program #SBATCH
+-job-name=lammps // Name of application

#SBATCH --error=job.%J.err 16 node 48 // Name of the output file
#SBATCH --output=job.%J.out 16 node 48 // Name of the error file
#SBATCH --partition=standard // Partition or queue name

Z/ To load the module //
module load compiler/intel/2018.2.199

Z/ Below are Intel MPI specific settings //
export I _MPI FALLBACK=disable

éxport I MPI_FABRICS=shm:dapl
export I_MPI_DEBUG=9 // Level of MPI verbosity //

<f:d $SLURM_SUBMIT DIR
or
¢d /home/: /LAMMPS 2018COMPILER/lammps-22Augl8/bench

Z/ Command to run the lammps in Parallel //

time mpiexec.hydra -n SSLURM NTASKS -genv OMP_NUM THREADS 1
/home/ /LAMMPS 2018COMPILER/lammps-22Augl8/src/lmp intel cpu intelmpi
-in in..j

Script for Hybrid Parallel Job — (MPI + OpenMP)

i #1/bin/sh

E#SBATCH -N 16 // Humber of nodes

E#SHF-.TCH —-ntasks-per-node=48 // Number of cores for node #SBATCH

P =-time=06:50:20 f/ Time required to execute the program #SBATCH
i——th—name=1ammps £/ Hame of application

E#SBETCH ==error=Job.%J.err 1& node 48 44 Hame of the output file

. #5BATCH --output=job.%J.out_16 node 48 // Name of the error file
! #3BATCH --partition=standard // Partition or gueus name

: cd $SLURM_SUBMIT DIR

Free Hand

Free Hand

Free Hand

Free Hand

s o e ki Ll s "=
SeAcarmuial

ff To load the module £/

module load compiler/intel/2018.2.199

S Below are Intel MPI =pecific settings 7/
export I MPI FALLBACE=disable

export I MPT F'J'\.R'F?Tl"'-'-‘.—qhm*ﬂ:'[‘\'l

Eexparr I MFI DEBUG=9 S/ Level of MPI verbosity /7

Eexpar: OMP NUM THREADS=Z24 /f/Possibly then total no. of MPI ranks will be =
! {total no. of cores, in this cage 16 nodes x 4B cores/node) divided by (no.
Euf threads per MEFI rank i.e. 24)

S/ command te run the lammps in Parallel /7

P time mpiexec.hydra =n 32 lammps.exe =in :

in.1j

| am familiar with PBS/ TORQUE. How do | migrate to
SLURM?

Environment Variables PBS/Torque SLURM

Job Id $PBS_JOBID $SLURM_JOBID

Submit Directory $PBS_JOBID $SLURM_SUBMIT_DIR

Node List $PBS_NODEFILE $SLURM_JOB_NODELIST

Job Specification PBS/Torque SLURM

Script directive #PBS #BATCH

Job Name -N [name] --job-name=[name] OR -J
[name]

Node Count -1 nodes=[count] --nodes=[min[-max]] OR
-N [min[-max]]

CPU count -1 ppn=[count] ---ntasks-per-node=[count]

CPUs Per Task --cpus-per-task=[count]

Memory Size -1 mem-[MB] --mem=[MB] OR —

mem_per_cpu=[MB]

Wall Clock Limit -1 walltime=[hh:mm:ss] --time=[min] OR —
mem_per_cpu=[MB]
Node Properties -1 --constraint=[list]
nodes=4.ppn=8:[property]

Standard Output File -0 [file_name] --output=[file_name] OR -0
_ [file_name]

[LC W =N W S B Ll s e =
Selcarvaial

Standard Error File -e [file_name] --error=[file_name] OR -e
{file_name]
Combine stdout/stderr -j oe (both to stdout) (This is default if you do

not specify —error)

Job Arrays -t [array_spec] --array=[array_spec] OR -a
[array_spec]

Delay Job Start -a [time] --begin=[time]

[LC W =N W S B Ll s e =
Selcarvaial

Preparing Your Own Executable

The compilations are done on the login node, whereas the execution happens
on the compute nodes via the scheduler (SLURM).

Note: The Compilation and execution must be done with same libraries and matching version to avoid
unexpected results.

Steps:

1. Load required modules on the login node.
2. Do the compilation.

3. Open the job submission script and specify the same modules to be loaded as
used while compilation.

4. Submit the script.

The directory contains a few sample programs and their sample job submission
scripts. The compilation and execution instructions are described in the beginning of
the respective files.

The user can copy the directory to his/her home directory and further try compiling
and executing these sample codes. The command for copying is as follows:

1. mm.c - Serial Version of Matrix-Matrix Multiplication of two NxN matrices

2. mm_omp.c - Basic OpenMP Version of Matrix-Matrix Multiplication of two
NxN matrices

3. mm_mpi.c - Basic MPI Version of Matrix-Matrix Multiplication of two
NxN matrices

4. mm_acc.c - OpenAcc Version of Matrix-Matrix Multiplication of two
NxN matrices

5. mm_blas.cu - CUDA Matrix Multiplication program using the cuBlas library.
6. mm_mkl.c - MKL Matrix Multiplication program.
7. laplace_acc.c - OpenACC version of the basic stencil problem.

It is recommended to use the intel compilers since they are better optimized for the
hardware.

[LC W =N W S B Ll s e =
Selcarvaial

Compilers
Compilers Description Versions Available
gcc/gfortran GNU Compiler 4.8.5,5.5.0,7.3.0, 8.3.0,9.3.0
(C/C++/Fortran
)
icclicpcl/ifort Intel Compilers 16.x, 17.x, 18.x, 19.x
(C/C++/Fortran
)
mpicc/mpicxx/mpif90 Intel-MP1 with 16.x, 17.x, 18.x, 19.x
GNU
compilers
(C/C++/Fortra
n)

mpiicc/mpiicpc/mpiifort Intel-MPl with 16.x, 17.x, 18.x, 19.x
Intel compilers

(C/C++/Fortra
n)

nvce CUDAC 7.5,8.0,9.0,9.2,10.0, 10.1,
Compiler 10.2

pgcc/pgc++/pgfortran PGl Compiler 19.4,19.10
(C/C++/Fortran

)

Optimization Flags

Optimization flags are meant for uniprocessor optimization, wherein, the compiler
tries to optimize the program, on the basis of the level of optimization. The
optimization flags may also change the precision of output produced from the
executable. The optimization flags can be explored more on the respective compiler
pages. A few examples are given below.

i Intel: -3

! -xHost GNU: -03

i BGI: -fast

Given next is a brief description of the compilation and execution of the various
types of programs. However, for certain bigger applications, the loading of
additional dependency libraries might be required.

C Program:

ESetting up of environment: module lead compiler/intel/2018.2.199
i compiler/gce/7.3.0

é:ampilatiﬁn: ipcc -03 -xHost <<prog name.c>>

 Execution: ./ a.out

= A e whakin PR]
SeAcarnenal

C + OpenMP Program:

! Setting up of envirconment: module load

i compiler/intel/2018.2.199 compiler/gcc/7.3.0

. Compilation: icc -03 -xHost -gopenmp <<prog_name.c>>
! Execution: ./ a.out

C + MPI Program:

i Setting up of environment: madule load

i compiler/intel/2018.2.199 compiler/gcc/7.3.0

. Compilation: mpiicc -03 -xHost <<prog_name.c>>
! Execution: mpirun -n <<num_procs>> ./a.out

C + MKL Program:

ESetting up of environment:

 module load compiler/intel/2018.2.199 compiler/gec/7.3.0
: Compilation: icc -03 -xHost -mkl <<prog_name.c>>

! Execution: ./fa.ocut

CUDA Program:

Setting up of environment:
module load compiler/cudas10.1 compiler/geoc/7.3.0

Example (1)

Compilation: nvee -arch=sm 70 <<prog name.cu>>

Execution: ./a.out

Note: The optimization switch —arch=sm 70 is intended for Volta V100
GPUs and is walid for CUDA 9 and later. Similarly, older wersions of
CUDA have compatibility with lower wversiens of GCC only. Accordingly,
appropriate modules of GCC must be loaded.

Example (2)

Compilation: nvee -arch=sm_ 70 -
Jhome/apps/Docs/samples/mm_kblas.cu lcublas

Execution: ./a.out

CUDA + OpenMP Program:

ESetting up of environment:
imodule load compilerfcudas10.1 compiler/goc/7.3.0

iExample {1}

iCompilaticn: nvee —arch=sm_70 -Xcompiler="-fopenmp" -lgomp
i /home/apps/Docs/samples/mm_blas omp.cu -lcublas

| Execution: ./a.out

;Example {2)

e =, e wikck Ll s "=
Bl camnnnal

Compilation: g++ -fopenmp =
Jhomefapps/Docs/samples/mm_klas_comp.c -
I/opt/ohpo/pubfapps/oudasouda-10. 1/ include
! Lfopt/ochpo/pubfappss/ouda/cuda-10.1/1ibé4 —-lcublas
'....E.R.Euu.tir—‘.]‘i.:....-.?l‘___..h.ﬁt.t...

OpenACC Program:

iSetting up of environment:
madule load compiler/pgisl9.10 compiler/foudasl0.1l

i Compilatien for GPU: pgec -—ace -fast -Minfeo=all -ta=tesla:cc70,managed
: /home/apps/Docs/samples/laplace acc.c
! Execution:./a.out

ECampilatiDn for CPU: pgcc -acc -faat -Minfo=all -ta=multicore =
D tp=skylake J/home/apps/Docs/samples/laplace_acc.c
! Execution:./a.out

Job Submission on Scheduler (SLURM)

A sample job submission scripts for each of the sample programs is given.
Upon completion/termination of the execution, two files (output and error) are
generated.

A few sample commands for SLURM are as follows:

sinfo Lists out the status of resources in the system
squeue Lists out the Job information in the system
sbatch Submitting a job to the scheduler

<<job script>>

scancel Delete a job
<<job name>>

[LC W =N W S B Ll s e =
Bl

Job Scheduling on PARAM Yukti

Scheduler

PARAM Yukti has Slurm-19.05.0-1 (open source) as a workload manager for the
HPC facility. Slurm is a widely used batch scheduler in top500 HPC list. PARAM
Yukti consists of three types of compute nodes: i.e. CPU only (192 GB) nodes,
High memory (768 GB) nodes and Nvidia GPGPU (192 GB) enabled.

Following partitions/queues have been defined for different requirements

1. standard: CPU, High memory and GPU Jobs
2. gpu: GPU and CPU jobs
3. hm: High memory-intensive jobs

All users can submit to the Standard partition. The standard Partition contains CPU,
high memory, and GPU nodes. GPU partition contains only GPU nodes. If the user
wants to submit a job only on GPU nodes, he/she can use GPU partition. If the user
wants to submit a job only on high memory, he/she can use hm partition.

Mote:User has to specify #5BATCH —gres=gpu:1/2 in their job script if user wants to use 1 or 2 GPU
cards on GFU nodes

sinfo

This Slurm command is used to view available partition and node
information on the cluster.
PARTITION AVAIL TU~'1ELI[~'1IT NODES STATE NODELIST

tandard# -06 3 maint cn[108-

9-101,103-107],hm[001-033,036-039]

Figure 13 — sinfo Command

walltime

Walltime parameter defines as to how long your job will run. The maximum runtime
of a job allowed as per the QoS Policy. If more than 3 days are required, a special
request needs to be sent to HPC coordinator and it will be dealt with on a case to
case basis. The command line to specify walltime is given below.

=S s e stk Ll e ™
Selcarvaial

srun -t walltime <days-hours:mins:seconds>

and also as part of the submit scripts described in the manual. If a job does
not get completed within the walltime specified in the script, it will get
terminated.

The biggest advantage of specifying appropriate walltime is that the efficiency of
scheduling improves resulting in improved throughput in all jobs including yours.
You are encourage to arrive at the appropriate walltime for your job by executing

your jobs few times.

NOTE: You are requested to explicitly specify the walltime in your command lines and scripts.

Per user

« Every user will have a quota of 650 GBof soft limit and 1TB of hard limit
with a grace period of 7 days in the HOME file system (/home) and 2TB
of soft limit and 4TB of the hard limit with a grace period of 14 days in
SCRATCH file system

» Users are recommended to copy their execution environment and input files

to the scratch file system (/scratch/<username>) during job running and
copy output data back to the HOME area

File retention policy has been implemented on Lustre storage for the "/scratch" file
system. As per the policy, any files that have not been accessed for the last 3
months will be deleted permanently

Three QoS (Quality of services) are created according to different job sizes
and wall time. Resource limits for users are defined as per below QoS

policy

QOS policy
1. Small QoS:

Maximum No.of.

nodes= 4 wall time=3

days

Maximum running jobs per user at a
time=>5 priority=0

Note: This is the default (o3, no need to mention this (oS in the job script.

. Medium QoS:

Maximum No.of.
Nodes=16 Wall time=2
days

P RLA R Wiakits — Llser™s
Nete: To use this QoS, vou must mention this QoS in the job script while submitting the job
Maximum running jobs per user at a
time =3 priority=50(more than small
QoS)
Example for using this QoS in the job
script #SBATCH --qos=medium
3. Large QoS:

Maximum No.of.

Nodes=32 wall time=1

day

Maximum running jobs per user at a
time=1 priority=100(more than small
and medium)

Note: To use this (oS, you must mention these QoS in the job script while submitting the job

Example for using this QoS in a job script

#SBATCH --qos=large

Note: QoS5 policy only applicable to INCASE internal users.

Scheduling Type

PARAM Yukti has been configured with Slurm’s backfill scheduling policy. It is good
for ensuring higher system utilization; it will start lower priority jobs if doing so does
not delay the expected start time of any higher priority jobs. Since the expected start
time of pending jobs depends upon the expected completion time of running jobs,
reasonably accurate time limits are important for backfill scheduling to work well.

Job Priority

The job's priority at any given time will be a weighted sum of all the factors that
have been enabled in the slurm.conf file. Job priority can be expressed as:

 Job_priority =
' (PriorityWeightAge) * (age_factor) +
(PriorityWeightFairshare) * (fair-share factor)
+ (PricrityWeightJobSize) * (job size factor) +
(PricrityWeightPartition) * ({partition factor) +
(PriorityWeightQOS) * (QOS_factor) +
SUM (TRES_weight cpu * TRES_factor_ cpu,
; TRES weight <type> * TRES factor <type>, :
e S OO U U UUU USSR 5

[LC W =N W S B Ll s e =
Bl

All of the factors in this formula are floating-point numbers that range from 0.0 to
1.0. The weights are unsigned 32-bit integers. The job's priority is an integer that
ranges between 0 and 4294967295. The larger the number, the higher the job will
be positioned in the queue, and the sooner the job will be scheduled. A job's priority,
and hence its order in the queue, can vary over time. For example, the longer a job
sits in the queue, the higher its priority will grow when the age weight is non-zero.

Age Factor: The age factor represents the length of time a job has been sitting in
the queue and eligible to run. The current value for Age factor is 10000.

Job Size Factor: The job size factor correlates to the number of nodes or CPUs
the job has requested. The current value for the Job Size factor is 1000.

Partition Factor: Each node partition can be assigned an integer priority. The
larger the number, the greater the job priority will be for jobs that request to run
in this partition. The current value for the partition factor is 15000.

Quality of Service (QOS) Factor: Each QOS can be assigned an integer priority.
The larger the number, the greater the job priority will be for jobs that request this
QOS. The current value for QOS factor is 100000.

Fair-share Factor: The fair-share component to a job's priority influences the order
in which a user's queued jobs are scheduled to run based on the portion of the
computing resources they have been allocated and the resources their jobs have
already consumed. The current value for fair-share factor is 100000.

SSHARE

This tool is for listing the shares of association to a cluster.

root@legin@l ~]# sshare
Account

root oot 0. 008 7216646 3. /] 0.03B8462
jncasr :

Figure 14 - Listing the shares of association to a cluster

ACCOUNTING

The accounting system tracks and manages HPC resource usage. As jobs are
completed or resources are utilized, accounts are charged and resource usage
is recorded. Accounting the policy is like a bank/Credit System, where each
department can be allocated with some pre-defined budget on a quarterly basis
for CPU usage. As and when the resources are utilized, the amount will be
deducted. The allocation will be reset at end of every quarter.

sacct

This command can report resource usage for running or terminated jobs including

s o e ki Ll s "=
SeAcarmuial

individual tasks, which can be useful to detect load imbalance between the tasks.
sstat

This command can be used to status only currently running jobs.

sreport

This command can be used to generate reports based upon all jobs executed in a
particular time interval.

[LC W =N W S B Ll s e =
Selcarvaial

Debugging Your Codes

Introduction

A debugger or debugging tool is a computer program that is used to test and
debug other programs (the "target" program).

When the program "traps" or reaches a preset condition, the debugger typically
shows the location in the original code if it is a source-level debugger or symbolic
debugger, commonly now seen in integrated development environments.

Debuggers also offer more sophisticated functions such as running a program step
by step (single-stepping or program animation), stopping (breaking) (pausing the
program to examine the current state) at some event, or specified instruction by
means of a breakpoint and tracking the values of variables.

Some debuggers have the ability to modify the program state while it is running. It
may also be possible to continue execution at a different location in the program to
bypass a crash or logical error.

Basics How-Tos

Compilation

Compilation with a separate flag *-g’ is required since the program needs to be
linked with debugging symbols.

i gcc -g <program_name.c>
‘e.x. goo -g random generator.c

Running with gdb:

gdb is a command-line utility available with almost all Linux systems’ compiler
collection packages.

?gdb <executable.outs>
re.x. gdb a.out

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Stepping_(debugging)
https://en.wikipedia.org/wiki/Stepping_(debugging)
https://en.wikipedia.org/wiki/Program_animation
https://en.wikipedia.org/wiki/Breakpoint

[LC W =N W S B Ll s e =
Selcarvaial

Basic gdb commands (to be executed in gdb command line window):

Start:

Starts the program execution and stops at the first line of the main procedure.
Command-line arguments may be provided if any.

Run:

Starts the program execution but does not stop. It stops only when any error or
program trap occurs. Command-line arguments may be provided if any.

Help:

Prints the list of commands available. Specifying ‘help’ followed by a command
(e.x. ‘help run’) displays more information about that command.

File <filename>:
Loads a binary program that is compiled with ‘-g’ flag for debugging.
List [line_no]

Displays the source code (nearby 10 lines) of the program in the execution where the
execution stopped. If ‘line_no’ is specified, it displays the source code (10 lines) at the
specified line.

Info:

Displays more information about the set of utilities and saved information by the
debugger. For example; ‘info breakpoints’ will list all the breakpoints, similarly ‘info
watchpoints’ will list all the watchpoints set by the user while debugging their
programs.

Print <expression>:
Prints the values of variables/expressions at the currently running instance of the program.
Step N:

Steps the program one (or ‘N’) instructions ahead or till the program stops for any
reason. Steps through each and every instruction even if it is function call (only
function or instruction compiled with debugging flags).

next:

This command also steps through the instructions of the program. Unlike ‘step’
command, if the current source code line calls a subroutine, this command does not
enter the subroutine, but instead steps over the call, if effect treating it as a single

RS e akcin PR]
SeAcarnenal

source line.

[LC W =N W S B Ll s e =
Selcarvaial

Continue:

This command continues the stopped program till the next breakpoint has
occurred or till the end of the program. It is used to continue from a paused/debug
point state.

Break [sourcefile:]<line_no> [if condition]:

Stops the program at the specified line number and provides a breakpoint for the
user. Specific source code file and breakpoints based on a condition can also be
set for specific cases. You can also view the list of breakpoints set, by using the
‘info breakpoints’ command.

watch <expression>:

A watchpoint means to break the program or stop the execution of the program when
the value of the expression provided is changed. Using the watch command-specific
variables can be watched for value changes. You can also view the list of
watchpoints by using the ‘info watchpoints’ command.

Delete <breakpoint number>

Delete command deletes a breakpoint or a watchpoint that has been set by a user
while debugging the program.

Backtrace:

Prints the backtrace of all stack frames of the program. Provides the call stack
and more other information about the running program.

These are some of the most powerful utilities that can be used to debug your
programs using gdb. gdb is not limited to these commands and contains a rich set of
features that can allow you to debug multi-threaded programs as well. Also, all the
commands, along with the ones listed above have ‘n’ number of different variants for
more in-depth control. The same can be utilized using the help page of gdb.

Using gdb (example — inspecting the code)

For this case study, we have a small program that generates a long unique random
number for each run.

Let’s look at the code we have.

#include <stdio.h> //printf
#include <stdlib.h> //malloc, srand, rand
#include <unistd.h> //getpid

#define N 100
#define N LEN 100

//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short 1 =0; 1 < (rand() % N); ++1i)
for (short j = 0; 1 < N; ++j) {
int value = (i * j) /7 (1 + j);
sum += (value != 0) ? value : sum;
}

return sum;

}

//Returns the factorial of a number
long long factorial(unsigned int x) {
e — [] x — &)
return 1LL:
else
return (x * factorial(x - 1));

Figure 15 — Snapshot of debugging process

Things to note:

1) We have a few libraries included for the functions that are used in the program.
2) We have two ‘#define’ statements:
a. ‘N’ for the number of times the ‘rand_fract’ function will spend in
calculating the random number.
b. ‘N_LEN’ for the length of the final random number string generated.

Currently, it is set to 100’ which means that the long random number
will be of length 100.

3) Then, we have a function by the name ‘rand_fract’ that iterates over two loops
and using the values of iterators (i’ and), it calculates a small random
number. Since ‘rand()’ function is used for the outer loop, its number of
iterations cannot be clearly defined which gives the function a random nature.

4) The next function is as simple as its name is. It just takes an unsigned
integer and returns its factorial.

[LC W =N W S B Ll s e =

Bl

PART 2:

int main (int argc, char *argv[]) {
short f1 = 0;

//Create a random seed based on process id.
srand((unsigned int) getpid());

//Generate a random number salt.
fl = rand fract() % 10;

//Get the factorial of the number
long long random fact = factorial(fl);

//Normalize the factorial to number modulo N LEN + 1
int normalized fact = random fact % (N LEN + 1);

int *array = NULL;

//Create an array of size obtained from normalized factorial modulo N LEN + 1
array = (int *) malloc (sizeof (int) * normalized fact);

if (array == NULL) { printf("Not enough memory\n"); return -1; }

//Populate the array with integers ni reverse order

//Double the number five times if it is even

for (int i = 0; 1 < normalized fact; ++i) {
array[i] = (normalized fact - i);

}

//Print the serial number

for (int i = normalized fact - 1; i >= 0; --i)
printf("%0d", (array[i] + rand()) % 10);

for (int i = (N LEN - normalized fact); i > 0; --i)
printf("%0d", (rand() % 10));

printf("\n");

//Free allocated memory
free(array);

return 0;

Figure 16 — Snapshot of debugging process

Things to note:

1) This is the main function of the program.
2) The flow of the main function is as follows:
a. The program first sets a random seed using the process-id of the program.
b. It calls ‘rand_fract’ function and the resultant random number is
operated by a modulo 10 operation. Finally, the result is stored in the
variable 1’
c. Next, the factorial of the obtained 1’ is calculated and
stored in ‘random_fract’.
d. This result is again passed through a modulo ‘N_LEN + 1’ and
stored in ‘normalized_fact’.
e. Then a dynamic array is constructed and partially filled will integer
values in descending order from the ‘normalized_fact’ value.

f. Finally, the partial array is printed by mixing the value of the array with
rand() function values followed by a modulo 10 operation.

g. The remaining partial part of the final random value is generated
using a basic rand() modulo 10 operation.

Using gdb (example — using the debugger)

The code that we looked upon seems correct, as well as it compiles successfully
without any errors. But, when we run this code snippet, this is the result we get.

$ gcc random generator.c
$./a.out

Floating point exception (core dumped)

Y |

Figure 17- Output at a debugging stage

The program ended up with a core dump without giving much information but just a
‘Floating point exception’. Now let’'s compile the code with debugging information
and run the program simply with gdb.

$ gcc -g random generator.c

$ gdb a.out

GNU gdb (GDB) Fedora 8.3.50.20190824-25.fc31

Copyright (C) 2019 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86 64-redhat-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from e

(gdb) set style enabled off

(gdb) run

Starting program: /home/vineetm/debugger/a.out

Program received signal SIGFPE, Arithmetic exception.
0x00000000004011cc in rand fract () at random generator.c:13
int value = (1 * j) / (1 + j);

Figure 18 — Snapshot of debugging process

Here we compiled the code using ‘-g’ and then used the ‘run’ command we studied
earlier for running the program. You can observe that the debugger stopped at line
number 13 where the ‘Floating point exception (SIGFPE)’ occurred. At this point,
we can even go and check the code at line number 13. But for now, let's check
what other information we can get from the debugger. Let’s check the values of the
variables ‘i’ and j at this point.

(gdb) run
Starting program: /home/ /debugger/a.out

Program received signal SIGFPE, Arithmetic exception.
0x00000000004011cc in rand fract () at random generator.c:13
int value = (i * j) / (1 + j);
) print i

Figure 19 — Output depicting “Arithmetic Exception”

The values of both i’ and Y appear to be ‘0’ and thus a divide by zero exception is
what caused our program to terminate. Let’s update the code such that the value of
i and J" will never become ‘0’. This is the modified code:

//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short 1 =1; 1 < (rand() % N); ++1)
for (short j = 1; 1 < N; ++j) {
int value = (1 * j) / (1 + j);
sum += (value != 0) ? value : sum;

}

return sum;

Figure 20 — Snapshot of debugging process

Thus, we just updated the loop index variables to start from ‘1’ instead of ‘0’.
Thus, using gdb, it was very simple to identify the point where the error
occurred. Let’s re-run our updated code and check what we get.

$ gcc random generator.c
$./a.out

Floating point exception (core dumped)

oy |

Figure 21 — Well, we dumped core !l

Free Hand

Free Hand

Free Hand

WHAT!? This is unexpected. We just cured the error part of our program and still
getting an FPE. Let’s go through the debugger and check where the error point is
right now.

$ gcc -g random generator.c

$ gdb a.out

GNU gdb (GDB) Fedora 8.3.50.20 4

Copyright (C) 2019 Free Sof ndation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86 64-redhat-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from s

(gdb) set style enabled off

(gdb) run

Starting program: /home, ‘debugger/a.out

Program received signal SIGFPE, Arithmetic exception.
0x00000000004011cc in rand fract () at random generator.c:13
13 int value = (i * j) / (1 + j);
(gdb) print i

) print j
_ -1
(gdb) list
//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short i = 1; 1 < (rand() % N); ++1i)
for (short j = 1; i < N; ++j) {
int value = (i * j)} / (i + j);
sum += (value != 0) ? value : sum;

}

return sum;

Figure 22 - Snapshot of debugging process

The debugger output shows that the error occurred on the same line as earlier. But
in this case, the value of ‘i’ and " are not ‘0,0’ but they are ‘1, -1’ which is causing the
denominator at line 13 to be ‘0’ and thus, causing an FPE. In addition to print
commands, we have also issued the ‘list command which shows the nearby 10 lines
of the code where the program stopped.

You can observe that some bugs in the programs are easier to debug but some
aren’t.

Free Hand

Free Hand

[LC W =N W S B Ll s e =
Bl

We will have to dig in much more to find out what is going on. Also, to be noted, we
have our inner loop iterating from 1 to N (which is 100), but still the value of ' is
printed out to be ‘-1’. How is this even possible!? Smart programmers would have
the problem identified, but let’s stick to the basics on how to gdb. Let us use the
‘break’ command and set a breakpoint at line number 13 and observe what is going
on.

(gdb) list 13
//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short 1 = 1; 1 < (rand() % N); ++1i)
for (short j = 1; 1 < N; ++j) {
int value = (i * j) / (i + j);
sum += (value !'= 0) ? value : sum;

}

return sum;

1
(gdb) break 13
Breakpoint 1 at 0x4011b5: file random generator.c, line 13.
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000004011b5 in rand fract at random generator.c:13
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (v or n) y
Starting program: /home ‘debugger/a.out

Breakpoint 1, rand fract () at random generator.c:13

13 int value = (i * j) / (i + j);
(gdb) print 1

$3=1

(gdb) print j

$4 =1

(gdb) i

Figure 23 — Setting Breakpoint

Thus, using the command ‘break 13’ we have set the breakpoint at line number 13
which was verified using the ‘info breakpoint’ command. Then, we reran the program
with the ‘run’ command. At line 13 the program stopped and using ‘print’ command
we checked the values of i’ and . t this point, all seems to be well. Now, let’s
proceed further. For stepping 1 instruction we can use the ‘step’ command. Let’s do
that and observe the value of j'.

Free Hand

Free Hand

[LC W =N W S B Ll s e =
Bl

(gdb) print j

$5 =1

(gdb) step

14 sum += (value '= 0) ? value : sum;
(gdb) step

12 for (short j = 1; 1 < N; ++j) {

(gdb) step

Breakpoint 1, rand fract () at random generator.c:13

13 int value = (i * j) / (i + j);
(gdb) print j

$6 = 2

(gdb) step

14 sum += (value '= 0) ? value : sum;
(gdb) step

12 for (short j = 1; 1 < N; ++j) {

(gdb) step

Breakpoint 1, rand fract () at random generator.c:13
13 int value = (i * j) / (i + j);
(gdb) print j

Figure 24 — single-stepping through to catch error !!

You can observe the usage of the ‘step’ command. We are going through the
program line by line and checking the values of the variable .

There seems to be a lot of writing/typing of the ‘step’ command just to proceed with
the program. Since we have already set a breakpoint at line 13, we can use
another command called ‘continue’. This command continues the program till the
next breakpoint or the end of the program.

(gdb) continue
Continuing.

Breakpoint 1, rand fract () at random generator.c:13
int value = (i * j) / (i + j);
) print j

(gdb) continue
Continuing.

Breakpoint 1, rand fract () at random generator.c:13

ik int value = (1 * j) / (i + j);
(gdb) print j

$9 = 5

(gdb) continue

Continuing.

Breakpoint 1, rand fract () at random generator.c:13
13 int value = (i * j) / (1 +]);
(gdb) print j

Figure 25 — Debugging continued

You can see that we reduced the typing of ‘step’ command by 3 times to a
‘continue’ command just 1 time. But this is also having us write ‘continue’ and
‘print’ multiple times.

Let us use some other utility in gdb known as ‘data breakpoints’ also known as

watchpoints. But before that, let us delete the existing breakpoint using the ‘delete’
command.

(gdb) info breakpoints
Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000004011b5 in rand fract at random generator.c:13
breakpoint already hit 6 times

(gdb) delete 1
(gdb) info breakpoints
No breakpoints or watchpoints.

(gdb) i

Figure 26 — Debugging continued

Now let us see how to set a watchpoint.

(gdb) watch j

Hardware watchpoint 2: j

(gdb) info watchpoints

Num Type Disp Enb Address
2 hw watchpoint keep y

(gdb) continue

Continuing.

Hardware watchpoint 2: j

0ld value = 6

New value = 7

0x00000000004011f5 in rand fract () at random generator.c:12
12 for (short j = 1; 1 < N; ++j) {
(gdb)

Continuing.

Hardware watchpoint 2: j

0ld value = 7

New value = 8

0x00000000004011f5 in rand fract () at random generator.c:12
12 for (short j = 1; i < N; ++j) {
(gdb)

Continuing.

Hardware watchpoint 2: j

Old value = 8

New value = 9

0x00000000004011f5 in rand fract () at random generator.c:12
for (short j =1; 1 < N; ++j) {

Figure 27 — Setting a watch point

Thus, using the command ‘watch j we have set a watchpoint over . Now every
time when the value of ' changes, a break will occur. You can also note the old and
new values of ‘' printed out at each break. Another point to note is that after having
one ‘continue’

command, the program had a break. Further, by just pressing the ‘Enter/Return’
button on the keyboard, the continue command was repeated. Thus, by pressing
the ‘Enter/Return’ button, the last command is repeated. At this point, we have
learned much about the debugger, but we are still not able to proceed fast with our
error. Is there any other way to proceed? Well, yes!!

We want to observe at the point where the value of j’ reaches closer to ‘N i.e. 100’.
This means that we are only concerned about what happens after ‘j’ reaches 99.
Here, we land upon using what is called conditional breakpoints. First, we will
delete our watchpoint and then make use of the conditional breakpoint.

(gdb) info watchpoints
Num Type Disp Enb Address
2 hw watchpoint keep vy
breakpoint already hit 4 times
(gdb) delete 2
(gdb) list 13
//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short i = 1; 1 < (rand() % N); ++i)
for (short j = 1; 1 < N; ++j) {
int value = (i * j) / (1 + j);
sum += (value != 0) ? value : sum;
}
return sum;
}
(gdb) break random generator.c:13 if j == 99
Note: breakpoint 3 also set at pc 0x4011b5.
Breakpoint 4 at 0x4011b5: file random generator.c, line 13.
(gdb) continue
Continuing.

Breakpoint 3, rand fract () at random generator.c:13
int value = (i * §) / (1 * j);

Figure 28 — Debugging continued

You can observe another variant of the ‘break’ command. We have explicitly stated
the file and the line number along with a condition to stop. This is useful when the
source code is large and having multiple files. After setting a conditional break, we
stopped at the point where the value of j’ becomes ‘99’. Now, let us see what
happens next. Since this is a critical point at which we could observe the program,
it is better if we step in the program using the ‘step’ command instead of relying on
any break/watchpoints.

sum += (value != 0) ? value : sum;

for (short j = 1; i ; ++]) {

int value L * j) / (1 +]);

sum += (value != 0) ? value : sum;
for (short j = 1; 1 < N; ++j) {
int value = (i * j) / (1 + j);

print j
101

Figure 29 — Well, Back to square one !!

This is unexpected!! The value of j’ should never be 100 or anything above it.
Thus, something is wrong with the conditional statement!!

By observation, we have figured out that the condition is itself wrong. It should have been
< N’instead of ‘i < N’. This is a silly mistake of the programmer that lead us to this
much of an effort.

Also, the value of ‘j’ which was observed as ‘-1’ was an outcome of the
‘short’ datatype overflow i.e. the value of ‘j’ went from 1 to 32767 (assuming
short as 2 bytes) and then from -32768 to -1.

Finally, a hard programming bug was discovered. Let us correct this error and
rerun the program.

$ gcc random_generator.c

$./a.out

Segmentation fault (core dumped)

$./a.out
1648815196934936907712847411075269363872465178968652936899126642679968327854843818024803725602089977
$./a.out

Segmentation fault (core dumped)

$./a.out

5697819555377639608368302418588269943918647330492449391532502328545856833586737093122407957112268963
$./a.out
6150930494475890863050318719122734582864309765193799040843958123681888230308039318234438024068348747
$./a.out

Segmentation fault (core dumped)

Y |

Figure 30 — Again Dumping Core!! Things are getting interesting or frustrating or
both !

[LC W =N W S B Ll s e =

Bl

This is strange!!

Sometimes the program is getting the correct output, but sometimes, we are
getting a segmentation fault. Debugging such a program may be tricky since the
occurrence of the bug is low. We will proceed with our standard debugger steps to
identify the error.

$ gcc -g random generator.c

$ gdb a.out

GNU gdb (GDB) Fedora 4-25.fc31

Copyright (C) 2019 Fre are Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86 64-redhat-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from o
) set style enabled off
(gdb) run
Starting program: /home, /debugger/a.out
5411371059776263605409873v45150521681086975694174815924540859823191291008689026600122878853935366497
[Inferior 1 (process 61832) exited normally]
(gdb)

Figure 31 — Debugging continued

We compiled the code and ran it using the debugger. But the program was
completed successfully. Let us rerun it till the point where the program fails.

(gdb) run

Starting program: /home/\ /debugger/a.out
5411371059776263605409873043180521681086975694174815924540859823191291008689026600122878853935366497
[Inferior 1 (process 61832) exited normally]

(gdb) run

Starting program: /home, /debugger/a.out
7919846386128432134671007571802513619267000845358948048917009272836772572766214308134147179016591178
[Inferior 1 (process 61978) exited normally]

{gdb) run

Starting program: /home, /debugger/a.out

Program received signal SIGSEGV, Segmentation fault.

0x000000000040126¢c in factorial (x=4294792703) at random generator.c:24
24 return (x * factorial(x - 1));

(gdb) Nl

Figure 32 — Debugging continued

Here we observe a point where the program exited at the function ‘factorial’.

This is a point where the debugger didn’t give much information about what the
value of the variable ‘X’ was. It just pointed out that the program failed at the
function named ‘factorial’. That's it!

Another reason for such kind of output would be the recursive nature of the
function. The stack frame where the function ‘factorial’ failed could be in a long nest
of recursive calls. At such points, it would be better to inspect the program at an
earlier point

Free Hand

Free Hand

Free Hand

[LC W =N W S B Ll s e =

Bl

and look for errors. Let us have a breakpoint before the ‘factorial’ function was
called and view the value of the parameters that are passed to the function.

(gdb) list main
return 1LL;
else
return (x * factorial(x - 1));
}
int main (int arge, char *argv[]) {
short f1 = 0;
//Create a random seed based on process id.

srand((unsigned int) getpid());

//Generate a random number salt.
fl = rand fract() % 10;

//Get the factorial of the number
long long random fact = factorial(fl);

//Normalize the factorial to number modulo N LEN + 1
int normalized fact = random fact % (N LEN + 1);
(gdb) break 36
Breakpoint 1 at 0x4012da: file random generator.c, line 38.
(gdb) run
Starting program: /home/vineetm/debugger/a.out

Breakpoint 1, main (argc=1l, argv=0x7fffffffdeds) at random generator.c:38

38 long long random fact = factorial(fl);

(gdb) print f1

$1 =1

(gdb) continue

Continuing.
9962554943440906583333593426000827274699155147995250801174774876796185292736525250533642241728519329
[Inferior 1 (process 62328) exited normally]

(gdb) I

Figure 33 — Debugging continued (Will it ever end?)

Thus, we have set a breakpoint before the call of the function ‘factorial’ and
ran the program. For the value of ‘f1 = 8’ for the ‘factorial’ function, the
process seems to exit normally. Let us rerun.

(gdb) run
Starting program: /home, ‘debugger/a.out

Breakpoint 1, main (argc=1l, argv=0x7fffffffdod8) at random generator.c:38
38 long long random fact = factorial(fl);

(gdb) print f1

$1 = -8

(gdb) continue

Continuing.

Program received signal SIGSEGYV, Segmentation fault.
0x000000000040126¢c in factorial (x=4294792699) at random generator.c:24
return (x * factorial(x - 1));

Figure 34 — We are almost there !!

Free Hand

Unexpectedly, we have got the value of 1’ as ‘-8’ and the program seems to have
crashed. Let us observe the ‘rand_fract’ function and ‘factorial’ function once again.
And study the behavior of the functions where we could get a negative number.

gdb) list rand fract

#define N 100
#define N LEN 100

//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short i =1; 1 < (
for (short j = 1;
int value 12) 7 i G

sum += (value != 0) ? value : sum;
}
return sum;

}

//Returns the factorial of a number
long long factorial(unsigned int x) {
if (x =1 || x == 0)
return 1LL;
else
(gdb) run
Starting program: /home, m/debugger/a.out

Breakpoint 1, main (argc=1l, argv=0x7fffffffdod8) at random generator.c:38
38 long long random fact = factorial(fl);

(gdb) print f1

$2 = -8

(gdb) i

Figure 35 — Debugging continued

Important points here to observe are:

The ‘rand_fract’ function is returning a datatype of ‘short’ while the calculation of the
return value could be significantly large which may overflow the size of ‘short’, thus,
causing a negative answer.

The function ‘factorial’ is expecting a value of type ‘unsigned int’. Since the value
passed to the function is a negative value, having an implicit conversion from a
negative number to an unsigned number means that we are having a very large
value passed to the factorial function.

Also, since the ‘factorial’ function is recursive, passing a very large number to it could
cause multiple calls to the same function and thus, overflowing the stack provided to the
user.

Free Hand

[LC W =N W S B Ll s e =
Bl

Now let us, step further into our program and see whether what we are discussing
is the same behavior that is being observed.

(gdb) print f1

$4 = -8

(gdb) step

factorial (x=4294967288) at random generator.c:21
if (x =1 || x == 0)

return (x * factorial(x - 1));

factorial (x=4294967287) at random generator.c:21
if (x =1]| x == 0)

return (x * factorial(x - 1));

factorial (x=4294967286) at random generator.c:21
if (x =1]| x = 0)

return (x * factorial(x - 1));

factorial (x=4294967285) at random generator.c:21
if (x =1 || x == 0)

return (x * factorial(x - 1));

factorial (x=4294967284) at random generator.c:21
if (x =1 || x == 0)

Figure 36 — At last a clue!!!

This is what we had expected!!
A number ‘-1’ passed to the ‘factorial’ function is being implicitly converted to a
very large number ‘4294967295’.

Stepping in more reveals the recursive behavior of the ‘factorial’ function i.e. each
call is having a sub-call to the same function with one value less. Thus, what to do in
these types of cases. Assume you have a large code where these functions are
called from multiple locations.

[LC W =N W S B Ll s e =
Bl

Modifying the signature of any of the functions means changing the code
everywhere where the function is called. This is not affordable!! These are some
cases, where a choice is to be made where patching the code is necessary for the
semantics of the program.

Let us observe a piece of code where this change can be made and then test our
program for the expected results.

int main (int argc, char *argv[]) {
short f1l = 0;

//Create a random seed based on process id.
srand((unsigned int) getpid());

//Generate a random number salt.
fl = rand fract() % 10;

fl = abs(fl);

//Get the factorial of the number
long long random fact = factorial(fl);

//Normalize the factorial to number modulo N LEN + 1
int normalized fact = random fact % (N LEN + 1);

int *array = NULL;
Figure 37 - Correction applied !

By observing the code, we find out that the expected value of ‘11’ is between
‘0 to 9’ (because of the modulo 10 operation).

Thus, without changing the signature of any function, we have inserted a patch
(the highlighted) portion, that maintains the semantics of the code as well cures
the problem that we had. Now let us just run and check our final program.

[LC W =N W S B Ll s e =
Bl

$ gcec random generator.c

$./a.out
1947155904444356260827867895829013940560127574392384362061544757042318542200659899527743928595211645
ggéégéggﬁ5546167856100961512939018573760223504833542534886091294243732854126729096261941760801537820
3241263252758390536991444038465396583053516022410228562188134665524049393105566500577005828487059653
g&%é?igg;3228567054539368096969066437379893671576029177909795701346393295764931536773483363035181911
gléé?éggé1538956027759598074797832715087451437704122190965898083361413690723150214543517739636518290
§7éégég#;2312412551673394453147630608790931492649027378923259025287077290331618510470262819931652479
§5é§g%gg§2870365479023130705918446909083470263354375991983675631252252710058384841530848408963208645
gSéigi82}9056291282368845079139095210792697191764209304803037158672651132052448868790301906812889064
EQ%QSigg;9538445900529958158240849030612776510222275380497441425328380877450674923651890544608240290
§5i§géggE28661777539838421822850471209841900007850956910192389646766662@5506776407087180325311790389

Figure 38 — Resolved !!!

Thus, we are getting the correct results as expected.

Conclusions

We started with a program that we assumed to be functional but then the program
ended up with bugs that were not straightforward. We then explored the power of

the debugger and the various ways to identify the bugs in our program. We looked
upon the easy solutions and slowly migrated towards the type of bugs that are not
easily traceable.

Finally, we identified and corrected all the bugs in our program with the help of the
debugger and arrived at a bug-free code.

Points to Note

Bugs in the program cannot be necessarily a compilation error.
One type of error can be caused by multiple bugs in the same line of code.
Sometimes, it is not possible to change the code even when the problem is
identified. The best way to cure this is to study the behavior of the code
and apply patches wherever necessary.

e Using simple utilities from the ‘GNU Debugger’ can help in getting rid of
problem-causing bugs in large programs.

e =, e wikck Ll s "=
Bl camnnnal

Overall Coding Modifications Done

return sum;

}

//Returns the factorial of a number
long long factoriali{unsigned int x) {
if (x == 1 || x == 0)
return 1LL;
else
return (x % factorial(x - 1));

}

int main (int argc, char =argv[]) {
short f1 = 0;

//Create a random seed based on process id.
srand((unsigned int) getpid());

J//Generate a random number salt.
fl = rand_fract() % 10;

fl = abs(fl);

J/Get the factorial of the number
long long random fact = factorialifl);

Unicode (UTF-8)» C~ Ln68 Col2 «

+ random_generator.c = + random_generator_buggy.c =
//Generate a short random number //Generate a short random number
—_ short rand_fract(void) { short rand_fract{void) {
short sum = 1; short sum = 1;
for (short i = 1; i < (rand() % N); #+i) - 1-‘ for (short 1 = 8; 1 < (rand() % N}; ++1i)
D for (short j = 13 j < N; #+3) { for (short j = @3 1 < N; ++#j) {
int value = (i = §) / (i + §); int value = (i =) / (1 + J);
sum += (value != 8) ? value : sum; sum += (value != @) ? value : sum;
} }

return sum;

}

//Returns the factorial of a number
long long factoriali{unsigned int x) {
if (x == 1 || x == 8)
return 1LL;
else
return (x % factorial(x - 1));

}
int main (int argc, char =argv[]) {
short f1 = 0;

//Create a random seed based on process id.
srand((unsigned int) getpid());

//Generate a random number salt.
fl = rand_fract() % 10;

J/Get the factorial of the number
long long random_fact = factorial(fl);

//Normalize the factorial to number modulo M LEN +

Unicode (UTF-8) C~ Lnll Coll~

Figure 39 — What all we did to get things right!

[LC W =N W S B Ll s e =
Selcarvaial

Machine Learning / Deep Learning
Application Development

Most of the popular python based machine learning/deep learning libraries are
installed on the PARAM Yukti system. While developing and testing their
applications, users have the option to choose different environment/runtime setup
like “virtual environment-based python libraries” or “conda runtime based python
libraries”.

For most of the major environments (virenv, conda) different modules are
prepared. Users can check the list of the modules by using “module avail”
command. Shown below is an example of loading conda environment in the
current bash shell and continue with application development.

Once logged into PARAM Yukti HPC Cluster, check which all libraries are available,
loaded in the current shell. To checklist of modules loaded in the current shell, use
the command given below:

5 module list

To check all modules available on the system, but not loaded currently, use the
command given below:

5 module avail

To activate conda environment on PARAM Yukti, load module “conda-python/3.7” as
shown below:

$ module lcad conda-python/3.7

Conda environment has been installed with most of the popular python packages
as shown below

Tensorflow Tensorflow-gpu Mpidpy Keras
Theano Scipy Scikit-Learn Pytorch

Once “conda-python/3.7” module is loaded, end-users can use all libraries inside
their python program. Many other modules based on virtual env are available on
the system.

[LC W =N W S B Ll s e =
Selcarvaial

Users can load those libraries using “module load” command and use them
for their applications.

How to Install your own Software?
There are two approaches to install the software.
1. System-wide installation

2. Local installation.

System-wide installation can be done by only the admin. If you wish to do this,
please approach the system administrator. Users can do the local installation in
their home directory. In this section, we are describing the installation of HMMER
application in the user’s home directory.

Local installation
Step 1. Login to the Yukti cluster by using your credential.
Step 2. Download the software that you want to install. For example to download HMMER

software use the command given below.

ES wget http://eddylab.org/scoftware/hmmer/hmmer.tar.gz

Step 3. Untar the file. (if your software is in zip format use unzip command)

'S tar zxf hmmer.tar.gz

Step 4. go to the software folder.

'S cd hmmer-3.3

Step 5. configure the installation path.

ES ./configure --prefix /your/install/path

Step 6. now run the 'make' command to install the software on the installation path.

5 make

The newly compiled binaries are now in the src directory.

Step 7. Runs a test suite that checks for errors in the software (optional)

s o e ki Ll s "=
SeAcarmuial

S make check

Step 8. run 'make install' to install the programs and man pages in your location
mention in step 2 #
55 make install

By default, programs are installed in /usr/local/bin and man pages in
lusr/local/share/man/man1/, if you do not provide installation path in step 2.

* This is general instruction for installation, please refer to the installation
instruction or manual or readme file that comes with software for more
details.

if you get any dependency error, resolve that or ask the system admin to install
that dependency if not installed.

Reference link: http://hmmer.org/documentation.html

http://hmmer.org/documentation.html

[LC W =N W S B Ll s e =
Selcarvaial

Some Important Facts

About File Size

The global/home is served by a number of storage arrays. Each storage array
contains a portion of the global/home. The size of a disk in the storage array is 2TB
(2000 GB).

Technically, the size of a file can be about 2000 GB (which is really big). However,
since the disk is shared by a large number of files, effectively the size of a single file
will be far smaller. Normally, this file size is kept to be about a few GBs which is
sufficient for most of the users. However, if you wish to have file sizes that are larger
than this, you need to create files

ACROSS disks and this process is known as ‘striping’.

i 1fs setstripe -c 4

After this has been done all new files created in the current directory will be spread
over 4 storage arrays each having 1/4th of the file. The file can be accessed as
normal no special action needs to be taken. When the striping is set this way, it will
be defined on a per-directory basis so different directories can have different stripe
setups in the same file system, new subdirectories will inherit the striping from its
parent at the time of creation.

We recommend users set the stripe count so that each chunk will be approx.
200-300GB each, for example

File Size Stripe count Command
500-1000 GB 4 Ifs setstripe -c 4 .
1000 — 2000 GB 8 Ifs setstripe -c 8

Once afile is created with a stripe count, it cannot be changed. User by themselves
are also able to set stripe size and stripe count for their directories and A user can
check the set stripe size and stripe count with the command:

. 1fs getstripe <path to the direcory>
To set the stripe count as

Elfs setstripe -c 4 -5 10m <path to the direcory>

[LC W =N W S B Ll s e =
Selcarvaial

The options on the above command used have these respective functions.

+ -c to set the stripe count; 0 means use the system default (usually 1) and -1
means stripe overall available OSTs (lustre Object Storage Targets).

+ -s to set the stripe size; 0 means use the system default (usually 1 MB)
otherwise use k, m, or g for KB, MB, or GB respectively

Little-Endian and Big-Endian issues?

By and large, most of the computers follow little-endian format. This essentially
means that the last byte of the binary representation of data is stored first. However,
there is another way of representing data (used in some machines) where the first
byte of the binary representation of data is stored first. When binary files are to be
read across these different kinds of machines, bytes need to be re-ordered. Many
compilers do support this feature.

Please explore this aspect, if a perfectly working code on a given machine,

fails to get executed by another machine (with a different processor).

[LC W =N W S B Ll s e =
Selcarvaial

Best Practices for HPC

. Do NOT run any job which is long a few minutes on the login nodes. The login
node is for the compilation of jobs. It is best to run the job on the compute
nodes.

. Itis recommended to go through the beginner’s guide in /home/apps/Docs/samples
This should serve as a good starting point for the new users.

. Use the same compiler to compile different
parts/modules/library-dependencies of an application. Using different compilers
(e.g. pgcc + icc) to compile different parts of the application may cause linking
or execution issues.

. Choosing appropriate compiler switches/flags/options (e.g. —O3) may increase
the performance of the application substantially (accuracy of output must be
verified). Please refer to the documentation of compilers (online / docs present
inside compiler installation path/man pages etc.)

. Modulesl/libraries used for execution should be the same as those used for

compilations. This can be specified in the job submission script.

. Be aware of the amount of disk space utilized by your job(s). Do an estimate
before submitting multiple jobs.

. Please submit jobs preferably in $SCRATCH. You can back up your
results/summaries in your SHOME

8. $SCRATCH is NOT backed up! Please download all your data to your Desktop/ Laptop.

9. Before installing any software in your home, ensure that it is from a reliable

and safe source. Ransomware is on the rise!

10.Please do not use spaces while creating the directories and files.

11. Please inform PARAM Yukti support when you notice something

strange - e.g. unexpected slowdowns, files missing/corrupted etc.

Following is the list of a few of the applications from various domains of science
and engineering installed in the system.

MUMmer, HMMER,
Bio-informatics MEME,

Schrodinger, PHYLIP,
mpiBLAST, ClustalW,

Molecular Dynamics NAMD (for CPU and
HPC Applications GPU), LAMMPS,
GROMACS
Material Modeling, Quantum-Espresso,
Quantum Abinit, CP2K, NWChem,
Chemistry
CFD OpenFOAM, SU2

Weather, Ocean, Climate i WRF-ARW, WPS
(WRF), ARWPost
(WRF), RegCM, MOM,
ROMS

cuDNN, TensorFlow, Tensorflow with Intel Python ,
Deep Learning Libraries : Tensorflow with GPU, Theano, Caffe , Keras,
numpy, Scipy, Scikit-Learn, pytorch.

Visualization Programs : GrADS, ParaView, Vislt, VMD

Dependency Libraries NetCDF, PNETCDF, Jasper, HDF5, Tcl, Boost, FFTW

Standard Application Programs on PARAM Yukti

The purpose of this section is to expose the users to different application packages
which have been installed. Users interested in exploring these packages may kindly
go through the scripts, typical input files, and typical output files. It is suggested that,
at first, the users may submit the scripts provided and get a feel of executing the
codes. Later, they may change the parameters and the script to meet their
application requirements.

e =, e wikck Ll s "=
Bl camnnnal

LAMMPS Applications

LAMMPS is an acronym for Large-scale Atomic/ Molecular Massively Parallel
Simulator. This is extensively used in the fields of Material Science, Physics,
Chemistry, and many others.

More information about LAMMPS may please be found at https://lammps.sandia.gov .

1. The LAMMPS input is in.lj file which contains the below parameters.

Input file = in.lj

4 3d Lennard-Jones

ma 1+
varia
ble

varia
T T oo

varia
ble
varia

-7 -

units
glam st
ael -
lattice
region
create bo

b
create_at

veloc
it
pair_st
¥le

LT B P

neighbor
neigh_mod
;;Y

D;'i::": a

index

1

index
s aqual
Bd*Ex Yy
egual 64*Sy
- equal
1]

ataom

feo 0.8442

box block 0 ${xx} 0 ${yvy} O
s{zz}

1 box

1

Ell create 1l.44 87287 loop
19/cut 2.5
11 1,01.0

2 B
0.3 bin
delay 0 every 20 check

]

1 all

La R =]

1000

ann E

2. THE LAMMPS RUNNING SCRIPT

. #!/bin/sh

| #SBATCH -N 8
| #SEATCH

i ——ntasks-per-node=40
{ #SBATCH —-Time=08:50:20

https://lammps.sandia.gov/

RS e akcin PR]
SeAcarnnal

#SBATCH
——arror=job.%J.err & noda 40
#$SBATCH
——output=job.%J.ocut_g nodes_40
#SBATCH ——-partition=standard

module load compilerSintel/2018.2.1598%
module load

compiler/intel-mpi/mpi-2018.2.19%9% mcocdule
load compiler/goc/T.3.0

source
foptsohpe/pubfapps/intel /2018 Z2/compilers _and libraries_ 2018.2.1
99,1 inuxSmkls/bin/mklvars.sh intelfd

axport
I_MPI_FALLBACK=disable
export

I MFI FRERICS=shm:ofa
#eaxport
I_MPI_FABRICS=shm:tmi
#export
I_MPI_FABRICS=shm:dapl
export I MPI DEEBUG=5

Shome/manjunath /NEW_LAMMPS lammps—7Augl 3/ bench

export OMF_NUM THREADS=1

time mpiexec.hydra —-n 5LUBM NTASES —genwv OMP_MNUM THREADS 1
JShome/manjunath/HNEW LAMMPS,lammps—7Augl2/s=rc/lmp intel cpu intelm

3. LAMMPS OUTPUT FILE.

;LAMMPS (7 Bug 20149)
E using 1 OpenMP thread(s) per MPI task
! Lattice spacing in =,¥,z = 1.6796 1.6796
i1.6796
i Created orthogonal box = (0 O 0) to (107.494 107.4%24 107.494)
i S by 8§ by 8 MPI processor grid
i Created 104B576 atoms
f craate atoms CPUT = 0.00387692 secs
[Neighber list info ...
update ewvery 20 steps, delay 0 steps, check
no max neighborsSatom: 2000, page size:
10000 master list distance cutoeff = 2.8
ghost atom cutoff = 2.8
bBinsize = 1.4, bins = 77 77
77
1l neighbor lists, perpetual//occasiconalfsextra = 1 40 O
{(l) pair 1j/cut, perpetual
attributes: half, newton
o
pair build:
H half/binfatomonlynewton stencil:]
L I o o [I U 5
bin: standard
Setting up Verlet run

oo

Unit style = 13
Current step : 0O
Time step : D.ODS

e s e ek Ll s e "=
Bl

ﬁer MPI rank memory allocation (min/avg/max) = 3.154 | 3.156 |
3.162 Mbytes
$tep Temp E pair E mol TotEng Press

; 0 1.44 -6.7733681 0 -4.6133701 -
5.0196704

11000000 0.65684946 -5.7123998 0 -4.7271266
0.49078272

Loop time of 2955.97 on 320 procs for 1000000 steps with
1048576 atoms

ﬁerformance: 146145.063 tau/day, 338.299
timesteps/s 99.4% CPU use with 320 MPI tasks x 1
OpenMP threads

MPI task timing breakdown:

Section | min time | avg time | max time %varavg| %total
Pair | 1284.2 | 1512.3 | 1866.9 | 494.3 | 51.16
Neigh | 178.94 | 207.58 | 261.09 | 217.8 | 7.02
Comm | 793.59 | 1207.7 | 1468.3 | 654.3 | 40.86
Qutput | 0.00011516 | 0.00084956 | 0.0027411 | 0.0 | 0.00
Modify | 19.566 | 22.639 | 29.863 | ©67.3 | 0.77
Other | | 5.744 | | | 0.19
Nlocal: 3276.8 ave 3325 max 3231 min

Histogram: 4 7 21 63 67 80 50 22 5 1

Nghost: 5011.29 ave 5063 max 4956 min

Histogram: 5 9 26 45 57 76 51 34 12 5

Neighs: 122781 ave 127005 max 118605 min

Histogram: 3 5 36 59 63 52 66 24 11 1

Total # of neighbors =

39290074 Ave neighs/atom =

37.4699 Neighbor list builds =

50000 Dangerous builds not

checked. Total Wall LAIMEi. o e
0:49:15

GROMACS APPLICATION

GROMACS

GROningen MAchine for Chemical Simulations (GROMACS) is a molecular
dynamics package mainly designed for simulations of proteins, lipids, and nucleic
acids. It was originally developed in the Biophysical Chemistry department of
University of Groningen, and is now maintained by contributors in universities and
research centers worldwide. GROMACS is one of the fastest and most popular
software packages available and can run on central processing units (CPUs) and
graphics processing units (GPUSs).

https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Lipid
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/University_of_Groningen
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit

Input description of Gromacs

s, = e ek
Bl camnnnal

L™

[LC W =N W S B Ll s e =
Selcarvaial

The input file can be download from
ftp://ftp.gromacs.org/pub/benchmarks/water GMX50 bare.ta

r.gz
The mdp option used is pme with 50000 steps

: #1/bin/sh
. $SBATCH -N

1o

! $SBATCH

P ——ntasks-per—-node=48

! ##SBATCH ——time=03:05:30
§¥SERTCH ==job-name=gromacs

i #SBATCH —--error—jeob.l6.%J.2rr
| $SBATCH
;——nutput=jnh_16_iJ_ﬁut

| #SBATCH —-partition=standard
{od

i Yhome/shweta//water—-cutl .0 GMX50 bare/s3072
imodule load compiler/intel/2018.5.274
imodule load appsfgromacs/,5.1.4/cpusintel 1B.5

[export I_MPI_DEBUG=5

B T T T s
OMEP_KNUM_THREADS=1
mpirun =np 4 gmx_mpi grompp =f pme.mdp =z conf.gro =-p topol.top

time mpirun —np SSLUORM HNTASES gmx _mpi mdrun —-s topol.tpr) 2=81 |
tese log gromacs 40 50k mpirun

Output Snippet:

Number of logical cores detected (48) does not match the number reported by
OpenMP (1) .

¢onsider setting the launch configuration manually!

Running on 10 nodes with total 192 cores, 480 logical cores

Cores per node: 0 - 48
Logical cores per node: 48

Hardware detected on host c¢cn072 (the node of MPI rank 0):
CPU info:

Vendor: Genuinelntel

Brand: Intel (R) Xeon(R) Platinum 8268 CPU @ 2.90GHz

SIMD instructions most likely to fit this hardware: AVX2 256
: SIMD instructions selected at GROMACS compile time: AVX2 256
Reading file /home/shweta/Gromacs/water-cutl.0 GMX50 bare/3072/topol.tpr,
VERSION 5.1.4 (single precision)
Changing nstlist from 10 to 20, rlist from 1 to 1.032
The number of OpenMP threads was set by environment variable
QMP_NUM_THREADS to 1 (and the command-line setting agreed with that)
NOTE: KMP AFFINITY set, will turn off gmx mdrun internal affinity setting
' as the two can conflict and cause performance degradation. To keep

using the gmx mdrun internal affinity setting, set the
KMP AFFINITY=disabled environment variable.

@verriding nsteps with value passed on the command line: 50000 steps, 100
ps
Will use 360 particle-particle and 120 PME only ranks
ihis is a guess, check the performance at the end of the log file
Using 480 MPI processes
Using 1 OpenMP thread per MPI process
Back Off! I just backed up ener.edr to ./#ener.edr.2#

ftp://ftp.gromacs.org/pub/benchmarks/water_GMX50_bare.tar.gz
ftp://ftp.gromacs.org/pub/benchmarks/water_GMX50_bare.tar.gz

RS e akcin e "=
EAcammual

starting mdrun ‘'Water'
S0000 =teps, 100.0 psa.

Average load imbalance: 5.5 %

Part of the tetal run time spent waiting due to load imbalance: 3.0

% Average PHE mesh/force load: 1.252

Part of the total run time spent

%

HOTE: 13.2 % performance was lost because the PME
ranks had more work to do than the PP ranks.
You might want to increase the number of PME
ranks or 1lncrease the cut-off and the greid

walting due to FP/PME imbalance: 13.2

Core t© Wall t {
(3] Time: (=) %)
204872.6024 427, 47884
Performanc {na/d B47 -5
""E': Hy] [htl'l.'l]‘.‘}'l‘i"'""""""""""'""""""""""'""""""""""'"""""":
20. 2

185 1.188

[LC W =N W S B Ll s e =
Selcarvaial

Acknowledging the National Supercomputing
Mission in Publications

If you use supercomputers and services provided under the National
Supercomputing Mission, Government of India, please let us know of any published
results including Student Thesis, Conference Papers, Journal Papers, and patents
obtained.

Please acknowledge the National Supercomputing Mission as given below:

;’]'he support and the resources provided by PARAM Yukti Facility under the National
Supercomputing Mission, Government of India at the Jawaharlal Nehru Centre for Advanced :
. Scientific Research (INCASR); Bangalore are gratefully acknowledged. :

Also, please submit the copies of dissertations, reports, reprints, and URLs in which
“National Supercomputing Mission, Government of India” is acknowledged to:

HoD HPC Technologies,

Centre for Development of Advanced
Computing, CDAC Innovation Park,
S.N. 34/B/1,

Panchavati,

Pashan, Pune —

411008

Maharashtra

Communication of your achievements using resources provided by the National
Supercomputing Mission will help the Mission in measuring outcomes and gauging
future requirements. This will also help in further augmentation of resources at a
given site of the National Supercomputing Mission.

s o e ki Ll s "=
SeAcarmuial

Getting Help — PARAM Yukti Support

We suggest that you please refer to these four easy steps to generate a Ticket
related to the issue you are experiencing.

Your Ticket will be assisted by the Yukti Support team. The ticket generated will
be closed only when the related issue gets resolved.

You can generate a new ticket for any of the new issues that you are experiencing.

Steps to Create a New Ticket

1. Place the URL (https://paramyukti.jncasr.ac.in/support) in your browser.
2. On the right-top corner of the page click Sign In. Refer to Fig: 36 for the same.

L C | paramyuktijncasr.acin/support/ o e :
i Apps »
SU PPORT CENTER Guest User | Sign In

Support Ticket System

4 Support Center Home |4 Open a New Ticket Check Ticket Status

Open a New Ticket

Check Ticket Status

Welcome to the Support Center

In order to streamline support requests and better serve you, we utilize a support ticket

system. Every support request is assigned a unique ticket number which you can use
to track the progress and responses online. For your reference we provide complete
archives and history of all your support requests. A valid email address is required to
submit a ticket.

Copyright & 2020 Param Yukt - All ights reserved

Figure 40 — Snapshot of Ticketing System

3. Sign in by using the Username and Password that you use for logging to the
Cluster. Refer to Fig37 for the same.

https://paramyukti.jncasr.ac.in/support
Free Hand

Free Hand

Free Hand

e =, e wikck Ll s "=
Bl camnnnal

& e ' paramyuktijncasr.ac.in/support/login.php 1r 12
8 App »

SUPPORT CENTER Guest User| Sign In

Support Ticket System

4% Support Center Home |- Open a New Ticket Check Ticket Status

Sign in to Param Yukdi

To better serve you. we encourage our Clients to register for an account.

| Email or Usemame } Not yet registered? Create an account
I'm an agent — sign in here |

Password . [|
| J

!_ Sign In |

If this is your first time contacting us or you've lost the ticket number, please open a new ticket

Copyright @ 2020 Param Yukli - All rights reserved

Figure 41- Snapshot of Ticketing System

4. Select a Help Topic from the Dropdown and then Click on Create Ticket. Refer
to Fig:38 for the same

- | & paramyuktijncasr.acin/support/tickets.php w e
i Apps »

SUPPORT CENTER | Profile | Tickets (0) - Sign Out

Support Ticket System

43¢ Support Center Home |- Cpen a New Ticket [Tickets (0)

Open a New Ticket

Please fill in the form below 1o open a new licket.

Email: Jlocalhost
Client:

| Help Topic

| — select a Help Topic — v |~

| Create Ticket || Reset || cancel |

Copyright ® 2020 Param :(Lﬂdl - All rights reserved.

Figure 42 - Snapshot of Ticketing System

5. Please fill in the details of your issue in the fields given and then click on Create ticket.

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

= A e whakin PR]
LR T TTET

< 2> ' paramyuktijncasracin/supportftickets.php @ ¥) e
i Apps »
SU PPO‘RT CENTER | Profite | Tickets (0} - Sign Out
Suppert Ticket System
4% Support CenterHome [OpenaMew Ticket) Tickets (0)

Open a New Ticket

Please fill in the form below to open a new fickel.

Email:
Client:

Help Topic
[System Suppert Ll

Ticket Details
Please Describe Your Issue

Issue Summary *
1
| |

P
w
]

a2
=
|

[=
4l
]
&=
]
m
m

g
I

(@ Drop files here or choose them

Create Ticket || Reset || Cancel |

Capyright & 2020 Parizm Yuks - Al ights reserved.

Figure 43 - Snapshot of Ticketing System

Once the Ticket is generated, an acknowledgment e-mail will be sent to your official
e-mail address. The e-mail will also contain the Ticket number along with reference
to the ticket that you have generated.

In case of any difficulty while accessing Yukti Support you can reach us via e-mail at
yuktisupport@jncasr.ac.in

mailto:yuktisupport@jncasr.ac.in
Free Hand

Free Hand

Free Hand

Free Hand

s o e ki Ll s "=
SeAcarmuial

Closing Your Account on PARAM Yukti

When once you have completed your research work and you no longer need to use
PARAM Yukti, you may please close your account on PARAM Yukti. Please raise a
ticket by following the URL https://paramyukti.jncasr.ac.in/supportThe system
administrator will guide you about the “Closure Procedure”. You will need clearance
from your project coordinator/ Supervisor/ Head of the Department about you having
surrendered this resource for getting a “no dues” certificate from the institute.

https://paramyukti.jncasr.ac.in/support

[LC W =N W S B Ll s e =
Selcarvaial

References

https://lammps.sandia.gov/

https://www.openacc.org/

https://www.openmp.org/

https://computing.linl.gov/tutorials/mpi/
https://developer.nvidia.com/cuda-zone
https://www.mmm.ucar.edu/weather-research-and-forecasting-model

http://www.gromacs.org/

© N o Ok wbd =

https://www.openfoam.com/

9. https://slurm.schedmd.com/

10. https://www.tutorialspoint.com/gnu_debugger/what_is_gdb.htm
11. https://nsmindia.in/

12. https://en.wikipedia.org/wiki/Deep_learning

13. https://docs.conda.io/en/latest/

14. https://docs.conda.io/en/latest/miniconda.html

15. https://www.tensorflow.org/

16. https://www.tensorflow.org/install
17.https://github.com/PaddlePaddle/Paddle

18.Keras, https://keras.io/

19. Pytorch, https://pytorch.org

20. https://mxnet.apache.org

21. https://software.intel.com/en-us/distribution-for-python

22.https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installati
on- guide

http://www.openacc.org/
http://www.openmp.org/
http://www.mmm.ucar.edu/weather-research-and-forecasting-model
http://www.gromacs.org/
http://www.openfoam.com/
http://www.tutorialspoint.com/gnu_debugger/what_is_gdb.htm
http://www.tensorflow.org/
http://www.tensorflow.org/install

