1	Course code	JNS 202
2	Course Title (credits)	Introduction to Neurobiology
3	Credits:	3 credits
4	Course Coordinator	Sheeba Vasu and James Chelliah
	(include participating	
	faculty)	
7	Objectives (goals, type of	The objective of this course is to introduce basic neurobiology to
	students for whom	students who may have an interest in pursuing Neuroscience as a
	useful, outcome etc)	research area or simply interested in nervous system function.
8	Course contents	History of neuroscience, Structure and function of components of the
		nervous system (neurons and glia); Evolutionary origins of the nervous
		system .
		Origin of membrane potential; Passive electrical properties of neuronal
		membranes;
		Factors affecting ionic current, Action potential generation and
		propagation; Features of ion channels
		Intercellular communication by neurons – chemical – synaptic
		properties; neurotransmitters; receptors; neuromodulation;
		neuromuscular junction; neuron-neuron signals; neuron-glia signals.
		Intercellular communication – electrical
		Developmental genetics of the nervous system: neural induction and
		patterning; genetic switches controlling nervous sytem development
		and function.
		Study of sensory pathways: Vision; Olfaction; taste; Hearing; Touch
		Study of motor circuit function
		Neuronal plasticity – synaptic, networks, behaviour
		Neural basis of complex behaviours – learning, memory, sleep, fear
		Hereditary nervous system disorders - Mapping and molecular cloning
		of the human Huntington's Disease gene; Animal models of
		Huntington's Disease; Parkinsons disease
		Genetic tools for the study of nervous system: Reverse genetics:
		transgenic and knock-out animal strategies and their use in
		neuroscience; Screens for identification of genes critical for nervous
		system function; Modern tools for in-vivo and real time analysis of
		nervous system function.
9	Evaluation /assessment	a. End-sem examination- 35 %
	(evaluation components	b. Mid-sem examination -35 %
	with weightage) (Note:	c. Assignments/paper presentation, etc (if any): 30 % (2 assignments)
	Equal weightage should	
	be given to mid- and end-	
	semester exams)	
10	Suggested readings	Principles of Neural Science; Eric R. Kandel, James H. Schwartz, Thomas M. Jessell.
		Neuroscience · M. Bear, et al (2006)· 3rd Ed. Linnincott Williams & Wilkins
		Neuroscience; Purves, D. et al. (2008); 4th Ed. Sinauer Associates.