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Instantaneous quench: phase ordering (Bray 2002)

• Prepare the system in (disordered) state above Tc

• Lower the temp to/below Tc instantly

• How does the system approach the stationary state?

` ∼ t1/zneq



Slow quench: residual defects

• Prepare the system in (disordered) state above Tc

• Cool to T ≤ Tc in finite time, τ ; no further evolution

time

Temp
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Rapid quench Slow quench Equil state
(Chae et al. 2012)



Kibble-Zurek argument (Kibble 1976, Zurek 1985)

• How does excess defect density decay with quench time?

D(τ)− Deq(T (τ)) ∼ τ−?

• Away from CP: relxn time ∼ O(1), remain time ∼ O(τ)

Close to CP: relxn time ∼ ξzss (t), remain time<relxn time
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• Time scale t∗ separates these two behavior

τ − t∗ ∼ ξzss (t∗) ∼ |Tc − T (t∗)|−νzss

For e.g., cooling protocol ending at Tc algebraically

|Tc − T (t)| ∼
(

1− t

τ

)β
• KZ time scale, τ − t∗ ∼ τ

βνzss
1+βνzss

• KZ length scale, ξ(t∗) ∼ τ
βν

1+βνzss

• Interpolates between infinitesimally slow and fast quench



Residual density of defects (Zurek 1985)

• Assume the dynamics are ‘frozen’ for t > t∗
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Pass on the equilibrium defects at t∗ to τ

δD(τ) ∼ δDeq(t∗) ∼ ξ−d(t∗) ∼ τ
−dβν

1+βνzss

• Scalings verified numerically and experimentally

(review, Campo & Zurek 2014)



‘Frozen dynamics’? (Biroli, Cugliandolo, Sicilia 2010)

• Model t > t∗ dynamics as instantaneous quench problem.

Coarsening occurs for t∗ < t < τ

`(t) ∼ (t − t∗)
1/zneq

• Defect density at the end of quench scales differently

δD(τ) ∼ `−d(τ) ∼ (τ − t∗)
−d/zneq ∼ τ−

dβν(zss/zneq)

1+βνzss

• Scaling numerically verified in systems where zss 6= zneq



Some questions

• Numerical verification of scaling argument(s)

Derive KZ scales from dynamical eqns? Analytical

expressions for the defect density? Scaling function?

• Focus on effect of coarsening at the end of quench

What is the role of coarsening near the CP?

Ans: Inst quench model good only in a parameter regime

• Work with equilibrium models

(Classical) nonequilibrium models?



Plan

• Models

• 1D Ising model with Glauber dynamics

• Mean field zero range process

• 1D asymmetric exclusion process

• Final quench to the critical point



Glauber Ising chain (Glauber 1963)

• Equilibrium state of ferromagnetic Ising model

H = −
L∑

i=1

σiσi+1 , σi ± 1

No phase transition

• Dynamical evolution via single-spin flips

Ψ̇({σ}) =
∑
j

W (−σj → σj)Ψ({−σj})−W (σj → −σj)Ψ({σ})

where transition rates satisfy detailed balance

W (σj → −σj) = 1− tanh

(
2

T

)
σj(σj−1 + σj+1)

2



Relevant dynamical exponents

• Equil dynamics at low temp due to unbiased random walk

of domain walls (no creation/annihilation allowed)

... ↑↑↑↑ ↓ ↑↑↑↑↑ ...

ξ ∼
√
t

• Nonequil dynamics following inst quench to low temp due

to domain of length ` merging over `2 time

`(t) ∼
√
t

• Spoiler alert! As zss = zneq = 2, expect KZ scaling hold

for defect density



Spin-spin correlation function

• Gk(t) = 〈σi(t)σi+k(t)〉 obeys closed linear equation

Ġk = −2Gk + γ(T )(Gk−1 + Gk+1) , γ = tanh

(
2

T

)
• In equilibrium state: Gk

T→0∼ e−k/ξ

Equil corr length, ξ
T→0∼ e2/T (not algebraically)

• Here, interested in domain walls ↑ ↓

D(t) =
1− G1(t)

2



Slow cooling dynamics

• For time-depn temperature

Ġk = −2Gk + γ(t)(Gk−1 + Gk+1) , k = 1, ..., L

with G1(t) = GL(t) = 1,Gk(0) = 0.

• Exact soln known for any γ(t)! (Reiss’80, Brey+Prados’94)

For an infinitely large system,

where φk(q) ∼ sin(kq)



Ġk = −2Gk + γ(t)(Gk−1 + Gk+1) , k = 1, ...

Expand as linear combination of orthonormal eigenvectors,

φk(q) that obey: −λ(γ)φk = −2φk + γ(φk−1 + φk+1)

Gk,eq(t)− Gk(t) =

∫
dqφk(q)a(q, t)

Ġk,eq(t) =

∫
dqφk(q)b(q, t)

(Brey & Prados 1994)



Cooling protocols

• Cool from T →∞ to T = 0 in time τ � 1

t/τ

Temp

α∞

α0

T (t)
t→τ∼
− ln(1− t

τ
)

α

t/τ

γ

α∞
α0

γ(t) = 1− [1−
( t
τ

)α
]

• Algebraic cooling also studied but not ‘interesting’



Low temp dynamics

• Scaling ansatz: Gk,eq(t)− Gk(t) = F (K ,Z )

K = kτ−a , Z = (τ − t)τ b

for large k , τ and t → τ

• Plug in the eqn for corr fn; simple power counting yields

K =
k

ξ(t∗)
=

k

τ
α

2(1+α)

, Z =
τ − t

τ − t∗
=
τ − t

τ
α

(1+α)

• Agrees with KZ argument for t∗; here, derived from dyn

eqns and obtained full corr fn, F (K ,Z )



Residual defect density

• At the end of quench,

D(τ) =
1

τ
α

2(1+α)

1

2
√
π

(
2

1 + α

) 1
2(1+α)

Γ

(
1 + 2α

2 + 2α

)
• Scaling same as KZ and Biroli et al. (since zss = zneq)

• Prefactors show D(τ) < Deq(t∗)

• Supports coarsening? (but t∗ is a scale!)

• Analytical (Krapivsky 2010), Simulation (Jeong et al. 2020)



Testing the coarsening proposal

For finite time quench

Gk(τ)− Gk(t)
t→τ
=



4Kα√
π(1− 2α)

Zα+ 1
2 , α < 1/2

2Kα√
π

ln(1/Z )Z , α = 1/2

K

2
√
π

(
2

1 + α

) 3
2(1+α)

Γ

(
2α− 1

2α + 2

)
Z , α > 1/2

For instantaneous quench (Glauber 1963)

Gk(T = 0)− Gk(t) =
KZ

2
√
π
, α→∞

Inst quench good in nonequil regime if quench is not too slow



Algebraic cooling of Ising model

• Here,

T (t)
t→τ∼ 4 (1− x)β

γ(t, τ) = 1− exp
[

1− (1− x)−β
]

• Scaling variables match with KZ argument

K = k

√
(ln τ)1/β

τ
, Z = (1− x)(ln τ)1/β .

• As this cooling is faster than log cooling, corresponds to

α→∞ for any β:

Gk(T = 0)− Gk(t) =
KZ

2
√
π



Summary

• More generally, close to CP, we expect

F (K ,Z ) =

{
A1(K , α) + A2(K , α)Z a<1 , α < αc

Â1(K , α) + Â2(K , α)Z , α > αc

t/τ

γ

α∞
α0

• Ai ’s depn on cooling scheme (nonuniversal); comparison

with that at t∗ not satisfactory. Instead look at

scaling with Z to test ‘coarsening proposal’

• Inst quench good if finite time quench is fast enough



Zero range process (review, Evans & Hanney 2005)

• Each site can be occupied by any number of particles.

• One particle hops to a nearest neighbor at rate u(m)

• Hops can be symm/asymm; any dimension

• Exact stationary distribution known for general model



Condensation transition

u(m) = 1 +
b

m
, b ≥ 0
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Phase transition for b > 2
(Evans & Hanney 2005)



Slow quench

• Anneal the system from b = 0 to b = bc in time τ

u(m, t) = 1 +
b(t)

m
, b ≥ 0

b(t) = bc

[
1−

(
1− t

τ

)α]
• Mean field geometry: Scaling ansatz in master equation

P(m, t)

Pss(m, t)
= Q(K = mτ−a,Z = (τ − t)τ b)

Consistent with KZ argument (since zss = zneq = 2)

But scaling function’s eqn doesn’t seem solvable



Mean field zero range process

• Instantaneous quench (Godréche 2003)

R(m, t) ≡ P(m, t)

Pss(m, t)
= c1(M) + c2(M)Z

• Slow quench simulations (for fixed m)

R(m, t)− R(m, τ) ∼

{
Z a, α < 1

Z , α > 1



Slow quench in nonequil models

• 1D asymmetric exclusion process

• Numerically found KZ scaling for defect density does not

hold; consistent with Biroli et al. (zss = 3/2, zneq = 3)

• Scaling function’s behavior?



Open questions

• For class of models with zss = zneq where KZ and Biroli et

al. coincide, (Priyanka, Chatterjee, Jain 2021)

F (K ,Z ) =

{
A1(K , α) + A2(K , α)Z a , α < αc

Â1(K , α) + Â2(K , α)Z , α > αc

• True for models with zss 6= zneq? Perhaps study

Kawasaki Ising chain/1D Excl process (eqns don’t close)

• Simple, general argument for αc?

• Quenches to ordered phase? Other annealing schemes?

• Analytical results for high-dim equil models? Models with

nonequilibrium SS (Priyanka, Jain 2016)?


