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Instantaneous quench: phase ordering (Bray 2002)
e Prepare the system in (disordered) state above T,
e Lower the temp to/below T, instantly

e How does the system approach the stationary state?
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Slow quench: residual defects

e Prepare the system in (disordered) state above T,

e Coolto T < T, in finite time, 7; no further evolution
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(Chae et al. 2012)



Kibble-Zurek argument (Kibble 1976, Zurek 1985)

e How does excess defect density decay with quench time?
D(7) = Deg(T(7)) ~ 77

e Away from CP: relxn time ~ O(1), remain time ~ O(7)

Close to CP: relxn time ~ £*#(t), remain time<relxn time
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e Time scale t, separates these two behavior
Tt () ~ | Te= T(e)
For e.g., cooling protocol ending at T, algebraically

T T~ (1-5)

T

Brzss

o KZ time scale, 7 — t, ~ 71+Bvzs

__Bv
e KZ length scale, &(t,) ~ 7TF5vzs

e Interpolates between infinitesimally slow and fast quench



Residual density of defects (Zurek 1985)

e Assume the dynamics are ‘frozen’ for t > t,
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Pass on the equilibrium defects at ¢, to 7

—dBv

0D(7) ~ 6Deg(t.) ~ E79(t,) ~ T

e Scalings verified numerically and experimentally

(review, Campo & Zurek 2014)



‘Frozen dynamics’? (Biroli, Cugliandolo, Sicilia 2010)

e Model t > t, dynamics as instantaneous quench problem.

Coarsening occurs for t, < t < T
0(t) ~ (t — )7
e Defect density at the end of quench scales differently
dBV(Zss/Zneq)

OD(7) ~ 07U(7) ~ (T — t,) "9/ %e0 o 77 T

e Scaling numerically verified in systems where z;; # zpeq



Some questions
e Numerical verification of scaling argument(s)
Derive KZ scales from dynamical eqns? Analytical

expressions for the defect density? Scaling function?

e Focus on effect of coarsening at the end of quench
What is the role of coarsening near the CP?

Ans: Inst quench model good only in a parameter regime

e Work with equilibrium models

(Classical) nonequilibrium models?



Plan

e Models

e 1D Ising model with Glauber dynamics
e Mean field zero range process

e 1D asymmetric exclusion process

e Final quench to the critical point



Glauber Ising chain (Glauber 1963)

e Equilibrium state of ferromagnetic Ising model
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No phase transition

e Dynamical evolution via single-spin flips

V({o}) = Z W(—0j = 0j)V({—0;})-W(o; = —0;)¥({0})
where transition rates satisfy detailed balance

2\ oo ,
W(o; = —0;) = 1 —tanh (T) %(9; 12+ %i+1)




Relevant dynamical exponents

e Equil dynamics at low temp due to unbiased random walk

of domain walls (no creation/annihilation allowed)
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e Nonequil dynamics following inst quench to low temp due

to domain of length ¢ merging over /2 time
ot) ~ vVt

e Spoiler alert! As z,; = z,eq = 2, expect KZ scaling hold

for defect density



Spin-spin correlation function

o Gi(t) = (oi(t)o;rk(t)) obeys closed linear equation
. 2
Gk = —2Gk + (T )(Gk—1 + Giy1) , 7 = tanh (7)

- T—0
e In equilibrium state: G, '~ e /¢

T—)O 2/7’ (

Equil corr length, £ "~ not algebraically)

e Here, interested in domain walls 1 |

p(r) = 1=t



Slow cooling dynamics

e For time-depn temperature

G = —2G, +Y(t)(Gror1 + Giy1) , k=1,...,L

with Gi(t) = G.(t) =1, G,(0) = 0.

e Exact soln known for any ~(t)! (Reiss'80, Brey+Prados'94)

For an infinitely large system,

s t [e o)
Gelt) — Gi(t) = / dade(a) / dt'e 2o W@ )Y 76 ()G, (1)
0 0 m=1

+ / " dge(g)e 2 0D 3 b (0)(Gon(0) — Go(0)
0 m=1

where ¢4 (q) ~ sin(kq)



Gk = —2Gk + Y(t)(Gko1 + Ghpa) , k=1,...

Expand as linear combination of orthonormal eigenvectors,

®i(q) that obey: —A(v)dx = =20k + Y(dk—1 + drt1)

Geealt) — Gilt) = / dadi(q)a(a t)
Geeqlt) = / dgdu(q)b(a. t)

(Brey & Prados 1994)



Cooling protocols

o Coolfrom T —wo0oto T=0intime7r>1

Temp £
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T(t) ' ) =1-[1-(>)
(t) ~ W) =1-11- (=) ]

e Algebraic cooling also studied but not ‘interesting’



Low temp dynamics

e Scaling ansatz: Gy ¢(t) — Gk(t) = F(K, Z)
K=kr2, Z=(1—t)"

for large k,7 and t — T

e Plug in the eqn for corr fn; simple power counting yields

K — k B k Z_T—t_T—t
_5(1-‘*)_7'%’ _T—l‘-*_Tﬁ

e Agrees with KZ argument for t,; here, derived from dyn

eqns and obtained full corr fn, F(K, Z)



Residual defect density

e At the end of quench,

1
1 1 2 2(1+a) 1+2
D(r) = — e
T20+a) Qﬁ 1+« 2+ 2«

e Scaling same as KZ and Biroli et al. (since zis = Zeq)

e Prefactors show D(7) < Dey(t.)

e Supports coarsening? (but t, is a scale!)

e Analytical (Krapivsky 2010), Simulation (Jeong et al. 2020)



Testing the coarsening proposal

For finite time quench

4K 1
Zot2 < 1/2
V(1 - 20) ca<l
2Ka
Gi(T) — Gi(t) 27 FIn(l/Z)Z s a=1/2
3
K 2 2(T+a) 2a0 — 1
— | — r Z 1/2
2ﬁ(1+a> <2a—|—2> a>1/

For instantaneous quench (Glauber 1963)

KZ
2m’

Inst quench good in nonequil regime if quench is not too slow

Gk(TZO)—Gk(t): o — 00



Algebraic cooling of Ising model

o Here,
T(t) X7 4(1-x)°
v(t,7) = 1—exp [1 —(1- x)f’B]

e Scaling variables match with KZ argument

(InT)1/5

K=k L Z=(1-x)(In7)¥" .

e As this cooling is faster than log cooling, corresponds to
a — oo for any g:

(T =0) = Gult) = 5 =



Summary

e More generally, close to CP, we expect

Al(K,Oé) +A2(K,OZ)ZQ’:1 , a < Q¢

F(K,Z):{A R
Al(K,Oé)+A2(K,Oé)Z, a > O

|4

T tit

e A;'s depn on cooling scheme (nonuniversal); comparison
with that at t, not satisfactory. Instead look at

scaling with Z to test ‘coarsening proposal’

e Inst quench good if finite time quench is fast enough



Zero range process (review, Evans & Hanney 2005)
e Each site can be occupied by any number of particles.

e One particle hops to a nearest neighbor at rate u(m)

u(2)
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e Hops can be symm/asymm; any dimension

e Exact stationary distribution known for general model



Condensation transition

b

um)=14+—,b>0
m

Condensate

Phase transition for b > 2

0.001

(Evans & Hanney 2005)




Slow quench
e Anneal the system from b =0 to b = b, in time 7
b(t)
m
b(t) = b |1 — (1 - f)a
-

e Mean field geometry: Scaling ansatz in master equation

u(m,t) =1+ , b>0

P(m,t)

Po(m. 1) =QK=mr2Z=(1—t)r"

Consistent with KZ argument (since zss = Zpeq = 2)

But scaling function’s eqn doesn’t seem solvable



Mean field zero range process
e Instantaneous quench (Godréche 2003)

R(m,t) = % =a(M)+ a(M)Z

e Slow quench simulations (for fixed m)
R(m, t)-R(m, 1)

, 42 R(m,t)-R(m,7)
77 a<1 12
R(m,t) — R(m,T) ~ S . 12
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Slow quench in nonequil models

e 1D asymmetric exclusion process

O%

Zero Range
Process

IO

Domain Walls
u(2)

ON©)
ﬁﬁgg ‘ o @

e Numerically found KZ scaling for defect density does not

hold; consistent with Biroli et al. (zss = 3/2, z5eq = 3)

e Scaling function’s behavior?



Open questions

e For class of models with z,; = z,eq Wwhere KZ and Biroli et

al. coincide, (Priyanka, Chatterjee, Jain 2021)

Al(K,Ol)—i-Az(K,Oé)Za , o < O¢

{0
Al(K, ) + A (K, a)Z | a > ac

e True for models with zss # z,eq? Perhaps study
Kawasaki Ising chain/1D Excl process (eqns don't close)
e Simple, general argument for a7

e Quenches to ordered phase? Other annealing schemes?

e Analytical results for high-dim equil models? Models with

nonequilibrium SS (Priyanka, Jain 2016)?



