International Winter School 2021: Frontiers in Material Science

Surface engineered graphene oxide to enhance heterogeneous electron transfer kinetics

Presenter:

Ashwini Ravi.

Ph.D. Student (DST Women scientist – B)

Research center:

Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology, Bangalore.

Research Supervisor:

Dr. Santosh M.S. Senior Scientist, CSIR – CIMFR, Dhanbad, India.

Research Collaboration:

Dr. Chandan Srivastava.

Associate Professor, Dept. of Materials Engineering, Indian Institute of Science, Bangalore.

Introduction:

- Electrochemical sensor: The sensing ability of an electrode material depends on the heterogenous electron transfer (HET) kinetics and surface interaction with the analyte.
- Mechanical milling of graphitic sheets at different time intervals leads to the creation of edge plane defect, vacancies and interplane sp³ bonds.
- Upon chemical oxidation, these defect sites are the preferred ones for the anchoring of the oxygen-containing functional groups such as carboxyl, carbonyl and hydroxyl groups.
- The edge/basal plane sites with oxygenated functional groups on graphene oxide (GO) act as heterogenous catalytic sites for electrochemical reactions.

- The as-produced GO samples showed a variation in aromatic to non-aromatic carbon content (sp³/sp² ratio), functional group constitution and defects.
- The effect of these parameters on the electrochemical behaviour was investigated using the electrochemical redox probe potassium ferricyanide $[K_4Fe(CN)_6]$ and also towards the enzyme less detection ability for hydrogen peroxide (H_2O_2) .

Material Characterization:

<u>Fig. 1:</u> XPS spectra for GO series – A: GO-0 h, B: GO-10 h, C: GO-20 h, D: GO-50 h.

through the GO series

Discussion:

- **Fig.1:** An increase in the percentage of oxygen- containing functional groups along the GO series (increasing milling time) indicates different degree of oxidation.
- **Fig.2A:** The sp³/sp² ratio was found to increase linearly along the GO series indicating an increase in the sp³ hybridized carbon domains which agrees with the effect of graphitic precursor milling duration.
- **Fig.2B:** The linear increase in the non-aromatic carbon content indicating the accumulation of more oxygen functional groups.

<u>Fig. 3:</u> AFM images of GO series A: GO-0h, B: GO-10h, C: GO-20h & D: GO-50h.

<u>Fig. 4:</u> Raman spectra (A) milled graphitic precursors at different time interval (B) Graphene oxide produced from milled graphitic precursors.

GO series	I _D /I _G	Oxidation degree	sp ³ /sp ² ratio	Average thickness of GO sheets (nm)
GO-0 h	1.04	64.7	0.20	28.6
GO-10 h	1.08	80	0.28	26.1
GO-20 h	1.09	87.7	0.49	2.1
GO-50 h	1.1	86.8	0.46	3.1

Table 1: Structural variation parameters through GO series.

Electrochemical Characterization:

<u>Fig. 5</u>:Cyclic voltammogram of GO series for the redox probe $K_3Fe(CN)_6$ and plot of HET constants - k^0 .

GO Series	$\Delta Ep(mV)$	$A_{eff}(cm^2)$	k ⁰ (cm s ⁻¹)	Ip (slope)
		imes 10 ⁻⁴	×10 ⁻²	
GO-0 h	180	0.188	4.44	0.86
GO-10 h	120	0.276	9.33	1.32
GO-20 h	100	0.968	8.49	4.42
GO-50 h	93	0.986	12.31	4.50

 Table 2: Electrochemical parameters derived from CV measurements.

Discussion:

- The nature of voltammogram for the GO samples (GO – 10 h, 20 h and 50 h) produced from milled graphite appears to be different compared GO-0 h.
- The peak separation potential (ΔE_P) and peak current (Ip) increases linearly with respect to the scan rate for GO – 0 h (A1) and GO – 10 h (A2), whereas for the samples GO – 20 h (A3) and GO – 50 h (A4), ΔE_P remains approximately constant with a linear increase in the peak currents.
- The ΔE_P values among the GO series were calculated from the Fig. A5, and is in the order GO-0 h > GO-10 h > GO-20 h > GO-50 h.
- The linear increase ΔE_P can be attributed to the enhanced edge plane defects, functionalities on the electrode surface in the GO 20 h and 50 h samples facilitating faster HET. This inference is supported by calculating the HET rate constant k₀ (Fig.A5) using Nicolson analysis.

Fig.9: Chronoamperometry response for GO series at applied potentials of -0.6 V for GO-0h and -0.4 V for GO-10h, 20h and 50h.

Fig.7: The cyclic voltammograms from GO series for 2 mM H₂O₂ at different scan rates.

Electrode	Sensitivity	Detection	
	(μA/μM)	limit (µM)	
GO_0 Hour	0.0062	376.83	
GO_10 Hour	0.0075	278.96	
GO_20 Hour	0.018	152.30	
GO_50 Hour	0.02	133.93	

Table 3: Detection limit and linear sensitivities

Fig.8: Cyclic Voltammograms of GO series with different concentrations of H₂O₂ at a fixed scan rate of 40 mV/s.

-0.6 -0.8

Potential (V)

-0.6

Potential (V)

-0.8

-1.0 -1.2 -1.4

-1.0 -1.2 -1.4

The of varied presence oxygen functionalities among the GO series due to different degree of oxidation can contribute to the greater interaction of H_2O_2 on GO sheets. This facilitates a faster electron transfer that can reduce the working potential for the reduction of H_2O_2 In addition, the edge plane carboxyl functional groups lead to an early onset of reduction potential.

Conclusion:

- The graphene oxide produced from milled graphite flakes showed a better HET rate constant k_0 , electrochemical active surface area, enhanced sensitivity and detection limit in the detection of H_2O_2 as compared to the GO produced from un-milled graphite.
- Among the GO produced from milled graphite (GO 10h, 20h and 50h), GO-50h exhibited better results with respect to k_0 , peak separation potential ΔE_P , sensitivity and detection limits.
- An improvement in the reduction potential from -0.6 V (GO-0h) to -0.4 V (GO-10h, 20h, 50h) in the detection of H_2O_2 infers a betterment in the catalytic nature among the GO series.
- The milling of graphitic precursor increases the catalytic activity of the produced GO series, which opens a new dimension to understand the surface phenomenon and encourages future researchers to develop applications based on such materials that influence the heterogeneous electron transfer [HET] kinetics and the sensitivity required for a multitude of applications.

Publications:

- R. Ashwini, Zinia Mohanta, M.K. Punith Kumar, Mysore Sridhar Santosh, Chandan Srivastava, "Enhanced heterogeneous electron transfer kinetics in Graphene Oxide produced from mechanically milled Graphite", Carbon Trends 5 (2021) 1000095.
- 2. R. Ashwini, V.G. Dileepkumar, K.R. Balaji, R. Viswanatha, C.R. Ravikumar, Chandan Srivastava, Mysore Sridhar Santosh, "Ternary Alkali Metal Chalcogenide Engineered rGO as a New Class of Composite (NaFeS₂-rGO) and its Electrochemical Performance" Sensor International 2 (2021) 100125.
- **3.** Ashwini Ravi, M.K.P. Kumar, M.Y. Rekha, M.S. Santosh, C. Srivastava, Graphene based Nanocomposites: Synthesis, Properties and Application as Electrochemical Sensors, *Comprehensive analytical chemistry*, (2020) Volume 91.
- **4. R. Ashwini**, M.K. Punith Kumar, M.Y. Rekha, M.S. Santosh, Chandan Srivastava, **Optimization of high entropy alloy nanoparticle graphene (HEA-G) composite for the enhanced electrochemical sensitivity towards urea oxidation**, Materials Today Communications (under review).

I would like to acknowledge:

- Department of Science and Technology (DST), Government of India (WOS B).
- CSIR Senior Research Fellowship (CSIR SRF 2018).
- Raman Charpak fellowship 2018 (CEFIPRA and DST).
- CIIRC, Jyothy Institute of Technology Krishna Venkatesh (Director), Dr. M.S. Santosh (Research Supervisor), Lab mates – Dileep, Balaji, Sumedh, Diwakar, Surya.
- Dept. of Material Engineering, Indian Institute of Science. Bangalore Prof. Chandan Srivastava and group, Lab mates Puneet, Jyoteender, Zinia, Rekha.
- International Winter School Organizing Committee, JNCASR, Bangalore.