Reduced thermal conductivity and electrical resistivity in Bi₂Se₃ thermoelectric compounds: Effect of In and Te Co-doping Ganesh Shridhar Hegde Research Scholar - Crystal Growth Lab Department of Physics,

MIT, MAHE, Manipal

Methodology

1. Grinding for 2 Hours

Samples

2. Pelletizing under 5 Ton Compression 3. Vacuum Sealing at 10⁻⁶ Torr

4. Sintering at 420^oC for 24 Hours

8. Sintering at 200°C for 12 Hours

7. Vacuum Sealing at 10⁻⁶ Torr

6. Pelletizing under 5 Ton Compression

-

for 1 Hour

International Winter School 2021

Characterizations

Powder X-ray Diffraction (XRD)

The X-ray diffraction (XRD) study was carried out by powder X-ray diffractometer (Rigaku Miniflex with Cu K α) in the angle 2 θ range 20 - 80° at the rate of 2°/min to confirm the purity, crystallinity, dominated phase, and formation of compounds

Field Emission Scanning Electron Microscopy (FESEM)

To investigate the surface morphological behavior, FESEM images of sample has been recorded using the instrument Carl Zeiss Sigma in the particle range of $1 \mu m$ at the magnification of 35 kX and applied voltage of 5 kV

Thermoelectric Characterization

Electrical resistivity, thermal conductivity and Seebeck coefficient are calculated using closed cycle refrigerator in the temperature range 10-350 K.

Results & Discussions: Powder XRD Studies

International Winter School 2021

Results & Discussions: FESEM Studies

a) Bi_2Se_3

b) $Bi_2Se_{2.7}Te_{0.3}$

c) $(Bi_{0.98}In_{0.02})_2Se_{2.7}Te_{0.3}$

d) $(Bi_{0.96}In_{0.04})_2Se_{2.7}Te_{0.3}$

4

Fig. 4: Temperature dependent electrical resistivity of

 $(Bi_{1-x}In_x)_2 Se_{2.7} Te_{0.3} samples$

(**Bi**_{1-x}**In**_x)₂Se _{2.7}Te_{0.3} samples International Winter School 2021

Fig. 6: Total thermal conductivity of

 $(Bi_{1-x}In_x)_2$ Se _{2.7} Te_{0.3} samples

Results & Discussions: Figure of Merit

Fig. 7: Lattice thermal conductivity and electronic thermal conductivity

of $(Bi_{1-x}In_x)_2$ Se 2.7 Te_{0.3} samples

$$K_e = \frac{L_0 T}{\rho}$$

Fig. 8: Temperature-dependent Power factor and ZT value of

 $(Bi_{1-x}In_x)_2$ Se 2.7 Te_{0.3} samples

$$PF = \frac{S^2}{\rho}$$

$$ZT = \frac{S^2T}{K\rho}$$

International Winter School 2021

- The sample (Bi_{0.96}In_{0.04})₂Se_{2.7}Te_{0.3} shows a 9 times reduction in electrical resistivity compared to the pristine sample.
- At low temperature, the thermal conductivity was found to reduce by 7.5 times for $(Bi_{0.96}In_{0.04})_2Se_{2.7}Te_{0.3}$ in comparison with the pristine sample.
- The highest ZT values are found to be 0.023 and 0.022 for $(Bi_{0.98}In_{0.02})_2Se_{2.7}Te_{0.3}$, $(Bi_{0.96}In_{0.04})_2Se_{2.7}Te_{0.3}$ respectively, with a *PF* value of about 120 μ W/mK² at 350 K. From the present study, it is realized that co-doping reduces thermal conductivity and electrical resistivity.

Acknowledgements

Dr. Ashwatha Narayana Prabhu Research Supervisor Department of Physics, MIT, MAHE, Manipal

Prof. (Dr.) Ashok Rao Department of Physics, MIT, MAHE, Manipal

> Mr. Manoj S P Research Scholar Department of Physics, MIT, MAHE, Manipal

Manipal Academy of Higher Education Manipal, Karnataka, 576104

> Research Scholars Department of Physics, MIT, MAHE, Manipal

International Winter School 2021

Dr. P D Babu Scientist Material Synthesis Lab UGC-DAE Mumbai

Dr. Y. K. Kuo Professor National Dong hua university Taiwan 7