

Understanding of microscopic origin of polarization and magnetoelectric coupling in Fe₂TeO₆

P. Pal¹, S. D. Kaushik², A. K. Singh^{1*}

¹Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela-769008, India ²UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre Mumbai-400085, India

Abstract

We present the rare existence of d^5 off-centering induced weak ferroelectric polarization and and magnetoelectric (ME) properties in the G type ($T_N \sim 210$) K) antiferromagnet Fe₂TeO₆ (FTO) compound. The origin of ferroelectricity (FE) is associated with both lattice and asymmetric electron density distribution around the ion cores. ME coupling is observed in magnetic field-dependent polarization, ME voltage, and magnetostrain measurements. Short-range magnetic ordering due to intrabilayer dimeric exchange coupling via the double oxygen bridged Fe-O1-Fe pathway is proposed to play a dominating role to exhibit the negative nonlinear magnetic field dependent ME behavior at 300 K. Interbilayer exchange via Fe-O2-Fe pathways dominantly determines the hysteretic nonlinear magnetic field dependent ME response below $T_{\rm N}$. The observed nonlinear ME coupling signifies magnetoelasticity as manifested in the temperature and magnetic field-dependent strain measurement. Hence the rare existence of FE and magnetoelectric coupling by d^5 ion is presented in FTO.

J. App. Phys. Accepted (16th Oct, 2021)

Macrosopic magnetic and magnetoelectric properties

Temperature (K)

H (kOe)

- **T**_N~210 K,
- □ 5/2-5/2 dimeric interaction: Magnetic correlation above T_N
- Direct evidences of magnetoelectric (ME) Coupling; Direct Measurements:
- Polarization vs Electric field under magntiec field at 300 K (RT)
- $ME \ voltage : Different \ kind \ of \ ME \\ coupling \ at \ T_N < T < T_N$
- Magnetostrain: Magnetoelastic coupling

Microscopic understanding of ferroelectricity and ME coupling

Fitting the coordination polyhedra with : Minimum Bounding Ellipsoid (MBE) :Bond distortion & Angular distortion [1]

- Principal radii; R_{ν} , R_{2} , R_{3} ($R_{1} \ge R_{2} \ge R_{3}$)
- ii) d: Central cationic displacement
- iii) <R>: Mean radius; Size
- *iv*) $\sqrt{\sigma^2(\mathbf{R})}$; Variance: distortion
- v) $S = (R_3/R_2 R_2/R_1)$: S<0: Oblate, S>0: Prolate, S=0: Sphere

- Reduced (13%) moment of Fe^{3+} ; 4.35 μ_B
- d^5 off centering of Fe^{3+}
- **Deviation from** D_{Ab} **symmetry**
- Change in polyhedra shape and size at
- T_N : Magnetostructural correlation
- Nonmonotonic temperature variation of distortion
- Non-octahedral hybridization \geq

- □ Fe K edge confirms existence of Fe³
- □ Low intense Gaussian peak; Small deviation from D_{4h} symmetry
- □ Sudden fall in pre-edge intensity at 210 K ; Fe-O hybridization depends upon magnetic correlation [2, 3]

X-ray Absorption Spectroscopy

1.6 (i)

<u>ک</u> ٥.

XANE: X-ray near edge spectra

EXAFS: Extended X-ray absorption fine structure

 $\chi(E) = \sum_{i} \frac{N_{j}}{kR_{i}} \left| f_{j}(k) \right| \ e^{-\frac{R_{j}}{\lambda_{e}}} e^{-2k^{2}\sigma_{j}^{2}} \ Sin(2kR_{j} + 2\delta_{1} + arg(f_{j}(k))$

- N_i: Coordination Number, R_i: Distance between scatterer & absorber, σ_i : Debye Waller factor; Represent disorder or deviation
- \Box First coordination cell : D_{Ab} symmetry and $P4_2/mnm$
- Fe-O (Apical) : 1.995(3) and σ^2 (Å²): 0.0042
- Fe-O2 (Equatorial): 2.0032 ; σ^2 (Å²): 0.006(3)
- Second coordination Fe-O: 3.795 (3) ; large σ^2 (Å²): 0.0073 implies larger flexibility [4, 5]

Microscopic understanding of ferroelectricity and ME coupling

 \blacktriangleright Electronic polarization P~ 0.05 μ C/cm⁻²

C:(0.70163, 0.70163, 0.0)

IC:(0.0, 0.0, 0.0)

7. Izumi and K. Momma, IOP Conf. Ser.: Mater. Sci. Eng. 18, 022001 (2011)

6. D. M. Collins, Nature 298, 49 (1982).