

Morphology Dependent Growth and Absorption Coefficient in Perovskite Quantum Dots

Prasenjit Mandal,¹ Subhashri Mannar,² Angira Roy,² Ranjani Viswanatha^{1, 2, 3} ¹New Chemistry Unit, JNCASR, Bangalore-560064 ²International Centre for Material Science, JNCASR, Bangalore-560064 ³School of Advanced Materials, JNCASR, Bangalore-560064 Email: prasenjit@jncasr.ac.in ; rv@jncasr.ac.in

Introduction

<u>ABX</u>₃

 $A = Cs^+, MA^+ \text{ or } FA^+$ $B = \text{Metal cation } (Pb^{2+}, Sn^{2+}, Ge^{2+})$ X = Halogen ion (Cl, Br, I)

Shamsi et.al. Chem. Rev. 2019, 119, 5, 3296-3348

- High PL Quantum Yield
- Tunable bandgap
- In high demand for photovoltaics and optoelectronics applications

Wang et. al. Nat. Commun. 2018 9, 4544

Santamaria et. al. Nano.Lett. 2009 9,20, 34882-3488

Motivation

- **Temperature** as a parameter to modulate size and * shape.
- ✤ Introduction of Cs-oleate precursor at various temperature to isolate the intermediate species.

Optical, Microscopic and Crystal Structure Studies for Growth Mechanism

Mandal et.al., Nanoscale Adv., 2020,2, 5305-5311

1<u>0 nm</u>

CLB-60

CLB-30

70

CsPbBr₃

60

50

Optical Study and Calculation of Absorption Coefficient

Bandgap vs size plot help us to determine the size of a NCs from known absorbance.

Equation 1:
$$E_g(l) = E(\infty) + \frac{1}{\alpha + \beta l + \gamma l^2}$$

Where E_g = Bandgap of the nanocrystals (in eV)

 $E(\infty)$ = Bandgap of the bulk (in eV), l = Size of the nanocrystals (in nm)

*****Beer-Lambert's law,

 $A = \varepsilon C L$

A = Absorbance, C = Nanocrystal concentration and L = path length ϵ = Molar absorption coefficient

purity of the nanocrystals.

Discussions and Conclusions

- Dimensionality-based exploration of anisotropic growth via asymmetrically coordinated oriented attachment.
- Experimental determination of absorption coefficient will help in calculation of direct concentration of nanocrystals.

Abs. coefficient (ε) of perovskite NCs depends on size, dimensionality along with the bandgap.

Acknowledgements

- 1. Prof. C.N.R. Rao, FRS.
- 2. JNCASR, DST Nanomission & SERB for funding.
- 3. CSIR for fellowship.
- 4. DESY, Germany for EXAFS measurement

