

Role of Antisite Disorder in MnSb₂Se₄: *Multiferroicity* vs. *Spin-glass*

<u>R Kumar</u> and A. Sundaresan

School of Advanced Materials and Chemistry & Physics of Materials Unit, JNCASR, Bangalore

Multiferroicity

Materials that exhibit more than one primary ferroic properties, are called multiferroics.

In our case, magnetic and electric properties are coupled to each other.

Type I

- Ferroelectricity and magnetism have different origin.
- Origin of ferroelectricity:
 - * Lone-pair effect,
 - * Geometrical frustration
 - * Charge ordering

Type II

- Ferroelectricity originates from magnetism.
- Mechanism of ferroelectricity:
 - Exchange striction
 - * Inverse DM interaction
 - * Spin dependent *p*-*d* hybridization.

Spin-glass

Spin-glass can be defined as a state having a large number of degenerate ground states which has spins frozen in random directions below a critical temperature.

Ingredients of Spin-glass

1. Disorder

Can be due to site randomness or bond randomness. E.g.: $Cu_{1-x}Mn_x$, $Fe_{1-x}Mn_xO_3$

2. Frustration

Lattice geometry inhibits ordered configurations. Simplest example: Triangular lattice with antiferromagnetic ordering. E.g.: $Li_2Mn_3O_7$

Magnetic and Dielectric Properties of Sample 1

Magnetic Properties of Sample 2

Comparison of Resistive Properties

A New Compound Having Negative Colossal Magnetoresistance!

- Resistivity data show gradual change from insulator to semiconductor to metallic state within a narrow temperature range.
- ✤ Increase in antisite disorder resulted into magnetic glassy state.
- With increase in magnetic field, spin-disorder decreased and hence resulted into lower resistivity. (Mechanism?)
- ✤ Absence of mixed valency, rules out the double exchange mechanism.
- Increase in magnetic field resulted in increased volume of ferromagnetic domains which reduced the electron scattering.

Conclusion

- * Antisite-disorder plays an decisive role in determining magnetic ground state.
- ✤ Presence of ferroelectricity in sample 1 has magnetic origin as paramagnetic phase is centrosymmetric.
- ✤ Glassy behaviour of sample 2 is due to site randomness of the magnetic ion.
- ✤ A new non-manganite compound with negative colossal magnetoresistance.
- ✤ Origin of colossal magnetoresistance is not double exchange mechanism.

Acknowledgement

- ✤ Prof. A. Sundaresan, for his guidance and constant support.
- ✤ Prof. C. N. R. Rao, for his encouragement.
- ✤ Labmates, for making healthy environment in the lab.
- ✤ JNCASR, for all the experimental facilities.

