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▪ Global primary energy consumption by fossil fuels were 

measured to be 135, 807 TWh.

▪ Significant increase was observed over the past half-century, 

and it is still increasing.

▪ Not only coal, oil and natural gas demand is also growing 

quickly.

➢ Fossil fuel 

consumption

▪ We now emit more than 35 billion tonnes of CO2 every year.

▪ Rate of warming reach to 0.32 oF per decade.

▪ We will run out of oil by 2052.

➢ Effects

➢ Solutions

▪ Plantation

▪ CO2 capture and 

conversions to 

value added 

products

▪ Use of renewable 

energy source

I. Photochemical

II. Electrochemical

III. Photoelectrochemical

IV. Thermal method

V. Photothermal method

➢ Ways of CO2

reduction reaction

➢ Electrochemical CO2 reduction reaction

▪ Mild operation technique

▪ Competition with HER 

▪ Lower overpotential

▪ Single product faradic efficiency and higher 

current density

▪ Low cost operating system and catalyst 

durability



Ga(NO3)3.6H2O +
DMF , NEt3

120oC

4,5-ImDC= 4,5-Imidazoledicarboxylic acid

(Me2NH2)12[Ga8(4,5-ImDC)12]·DMF·29H2O

Ga-MOC 

➢ Structure of the MOC

➢ Gelation with binder

Connected through 

Me2NH2
+

= Ga

= O = N

= C

12-

Synthetic strategy

➢ Binder

▪ Redox active 

metal center

▪ Contains –NH2

group

Cu(NO3)2.3H2O 

in ethanol

2 eq. of 

Ethylenediamine

[Cu(en)2(NO3)2]

Cu-com
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 Simulated pattern

➢ PXRD of the binder

Binder = NH4
+

➢ Synthesis



Characterization

Ga-Cu gel 0.5mL 0.01(M) Ga-MOC 0.5mL 0.1(M) Cu-com

➢ Gelation

Ga-Cu xerogel 
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➢ Rheology

➢ Stimuli response

➢ FTIR

➢ AFM

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm-1)

 Ga-MOC

 Ga-Cu xerogel

 Cu-complex

C-H stretching C=O 
stretching C-N stretching 

N-H 
stretching 

C-H 
stretching 

N-O 
stretching 

[Cu(en)2(H2O)2]6[Ga8(ImDC)12]

10 20 30 40 50

10 20 30 40 50

 Ga-Cu xerogel

2q (degrees)

 from Single crystal 

➢ PXRD
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Electrochemical CO2 reduction

CO2

CO 

H2O 

O2

Potentiostat

CO2

inlet

Gaseous product  

outlet
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RE 

CE 
H+

H+

e-

-e-

➢ Electrocatalytic setup

▪ Theoretical redox potential of CO2 to CO conversion 

= -0.1 V vs RHE 

▪ Overpotential = (0.3-0.1) V = 200 mV  

▪ 0.2 M KHCO3 has been used as the electrolyte (pH = 7.1)

▪ Copper is the redox active center for this catalysis process

▪ Catalyst loaded carbon paper used as the WE

▪ Ag/AgCl as RE and 

▪ Pt as the CE
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➢ Faradic efficiency ➢ Partial current density

▪ 92 % faradaic efficiency was obtained for CO product at 0.95 V vs RHE

▪ At 0.95 V the partial current density for CO was 14 mA/cm2

- 1.4 V vs 

Ag/AgCl

- 1.5 V vs 

Ag/AgCl

- 1.6 V vs 

Ag/AgCl

- 1.7 V vs 

Ag/AgCl

HCOO- (8.33) Phenol (7.2)

FE% = 

2.7%

FE% = 

1.93%

FE% = 

1.78%

- 1.7 V vs 

Ag/AgCl

- 1.6 V vs 

Ag/AgCl

- 1.5 V vs 

Ag/AgCl

- 1.4 V vs 

Ag/AgCl

CH3OH (3.25) DMSO (2.65) 

FE% = 10.28%

FE% = 5.23%

FE% = 3.9%

➢ LSV and CV
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➢ NMR analysis 

▪ Minute amount of formate and methanol was obtained as liquid products
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➢ Electrocatalysis in gel state

• Similar faradic 

efficiency was 

obtained as like the 

xerogel

• 94 % FE for CO at 

0.95 V vs RHE

➢ Tafel slope

CO2 + e- + H+ HCOO (ad)

HCOO (ad) + e- + H+ CO + H2O   

▪ Pathway

▪ Tafel slope indicates, 

second electron transfer 

process is the rate 

determining step

➢ Stability➢ i-t curve @ different 

potential
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Conclusion

➢ We have designed a hybrid soft material with a redox active metal centre.

➢ Bi-component gel to crystallisation process happens spontaneously without 

application of external stimuli.

➢ Low cost Cu2+ complex was used as the catalytic centre.

➢ CO2 reduction reaction was obtained with low overpotential of 200 mV.

➢ CO Faradaic Efficiency was obtained 94% at -0.95 V vs RHE.

➢ It can couple the two way advantage of renewable energy uses and CO2 removal.
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