Magnetic structure and crystal-field states of antiferromagnetic CeNiGe3: Neutron scattering and đâ˘SR investigations
Magnetic structure and crystal-field states of antiferromagnetic CeNiGe3: Neutron scattering and đâ˘SR investigations
We present the results of microscopic investigations of antiferromagnetic CeNiGe3 using neutron powder diffraction (NPD), inelastic neutron scattering (INS), and muon spin relaxation (đâ˘SR) measurements. CeNiGe3 crystallizes in a centrosymmetric orthorhombic crystal structure (space group đśâ˘đâ˘đâ˘đ) and undergoes antiferromagnetic (AFM) ordering. The occurrence of long-range AFM ordering at đNâ5.2K is confirmed by magnetic susceptibility, heat capacity, neutron diffraction, and đâ˘SR measurements. The NPD data characterize the AFM state with an incommensurate helical magnetic structure having a propagation vector k = (0, 0.41, 1/2). In addition, INS measurements at 10 K identified two crystal electric field (CEF) excitations at 9.17 meV and 18.42 meV. We analyzed the INS data using a CEF model for an orthorhombic environment of Ce3+ (đ˝=5/2) and determined the CEF parameters and ground state wave functions of CeNiGe3. Moreover, zero-field đâ˘SR data for CeNiGe3 at đ<đN show long-range AFM ordering with three distinct oscillation frequencies corresponding to three different internal fields at the muon sites. The internal fields at the muon-stopping sites have been further investigated using density functional theory calculations.
Inelastic neutron scattering response, a color-coded contour map of the intensity, energy transfer đ¸Â vs momentum transfer đ for CeNiGe3 measured at (a) 10 and (c) 100 K, and for YNiGe3 measured at (b) 10 and (d) 100 K, respectively. Magnetic scattering Sđ(Q, đ) vs energy transfer đ¸Â for CeNiGe3 from 4 meV to 25 meV at (e) 10 K and (f) 100 K. The thick solid red lines represent the fit based on the CEF model using Eq. (1).